1) Функция не определена при обращении в ноль знаменателя, т.е. x ≠ 0 .
D(f) ≡ R \ {0} ≡ ;
2) В функции встречаются только чётные степени аргумента, а значит она чётная. Докажем это:
;
Найдём первую производную функции y(x) :
;
;
При x = 0, производная y'(x) – не определена, как и сама функция, при всех остальных значениях аргумента функция и её первая производная определены и конечны, а значит функция непрерывная на всей области определения D(f) – на всей числовой прямой, кроме ноля.
3) Функция не определена при x = 0 . Это точка разрыва. При этом её значение стремится к положительной бесконечности, что легко доказать:
;
Если приравнять функцию к нолю, получим:
;
;
;
– что невозможно ни при каких действительных значениях аргумента;
Значит, никаких пересечений графика с осями координат нет.
4. Найдем асимптоты y(x).
По найденному в (3) пределу, ясно, что линия x = 0 – является вертикальной двухсторонней асимптотой графика функции y(x) .
Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± :
;
Значит, уходя на бесконечность обоих знаков график функции y(x) имеет двунаправленную горизонтальную асимптоту y = 2 ;
Наклонных асимптот нет, и не может быть, так как есть горизонтальные с обеих сторон.
5. Первая производная функции y(x) :
– положительна при отрицательных значениях аргумента и отрицательна при положительных х ;
Значит, функция возрастает на и убывает на ;
Уравнение т.е. – не имеет решений, а значит, у функции нет экстремумов, т.е. конечных локальных минимумов или максимумов.
6. Найдём вторую производную функции y(x) :
;
при любых значениях аргумента ;
В силу общей положительности второй производной – график функции всегда «улыбается», т.е. он вогнут, или, говоря иначе: он закручивается против часовой стрелки на всём своём протяжении при проходе по числовой оси аргументов слева направо.
Поскольку выгнутость повсеместна, то и точек перегиба не может быть. И их нет, соответственно.
Если периметр 16 см, то значит сумма 2-х сторон = 8 см. Это может быть 1+7 или 2+6 см (3+5 и 4+4 см не подходят так как очень широкие для квадрата, их 7 штук не поместится в нем). Тогда разместим подряд 3 прямоугольника 2 на 6 см и поместим их в центр квадрата так, что для размещения остальных 4-х прямоугольников размером 1 на 7 см останется рамочка по краю квадрата размером в 1 см. В ней и разместятся эти 4 прямоугольника. Я попробую это нарисовать. Цифрами я буду обозначать номер прямоугольника. Например - 1111111 - это первый прямоугольник размером 1 на 7 см. А 666666 - это шестой прямоугольник размером 2 на 6 см. 666666
Исследовать функцию и построить график.
Решение:
1) Функция не определена при обращении в ноль знаменателя, т.е. x ≠ 0 .
D(f) ≡ R \ {0} ≡ ;
2) В функции встречаются только чётные степени аргумента, а значит она чётная. Докажем это:
;
Найдём первую производную функции y(x) :
;
;
При x = 0, производная y'(x) – не определена, как и сама функция, при всех остальных значениях аргумента функция и её первая производная определены и конечны, а значит функция непрерывная на всей области определения D(f) – на всей числовой прямой, кроме ноля.
3) Функция не определена при x = 0 . Это точка разрыва. При этом её значение стремится к положительной бесконечности, что легко доказать:
;
Если приравнять функцию к нолю, получим:
;
;
;
– что невозможно ни при каких действительных значениях аргумента;
Значит, никаких пересечений графика с осями координат нет.
4. Найдем асимптоты y(x).
По найденному в (3) пределу, ясно, что линия x = 0 – является вертикальной двухсторонней асимптотой графика функции y(x) .
Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± :
;
Значит, уходя на бесконечность обоих знаков график функции y(x) имеет двунаправленную горизонтальную асимптоту y = 2 ;
Наклонных асимптот нет, и не может быть, так как есть горизонтальные с обеих сторон.
5. Первая производная функции y(x) :
– положительна при отрицательных значениях аргумента и отрицательна при положительных х ;
Значит, функция возрастает на и убывает на ;
Уравнение т.е. – не имеет решений, а значит, у функции нет экстремумов, т.е. конечных локальных минимумов или максимумов.
6. Найдём вторую производную функции y(x) :
;
при любых значениях аргумента ;
В силу общей положительности второй производной – график функции всегда «улыбается», т.е. он вогнут, или, говоря иначе: он закручивается против часовой стрелки на всём своём протяжении при проходе по числовой оси аргументов слева направо.
Поскольку выгнутость повсеместна, то и точек перегиба не может быть. И их нет, соответственно.
7.
При х = ± 1 : : : y(x) = 3 ;
При х = ± 2 : : : y(x) = 2.25 ;
При х = ± 1/2 : : : y(x) = 6 ;
Строим график:
Это может быть 1+7 или 2+6 см (3+5 и 4+4 см не подходят так как очень широкие для квадрата, их 7 штук не поместится в нем). Тогда разместим подряд 3 прямоугольника 2 на 6 см и поместим их в центр квадрата так, что для размещения остальных 4-х прямоугольников размером 1 на 7 см останется рамочка по краю квадрата размером в 1 см. В ней и разместятся эти 4 прямоугольника. Я попробую это нарисовать. Цифрами я буду обозначать номер прямоугольника. Например - 1111111 - это первый прямоугольник размером 1 на 7 см.
А 666666 - это шестой прямоугольник размером 2 на 6 см.
666666
28888888
23344551
23344551
23344551
23344551
23344551
23344551
77777771