Чтобы проверить это приравняем получившуюся дробь к 3/7
(2+n*2019)/(3+n*2017)=3/7
7*(2+2019n)=3*(3+2017n)
14+14133n=9+6051n
14133n-6051n=9-14
8082=-5
n=-5/8082 - ответ отрицательный и дробный -число (n) раз не может быть отрицательным и дробным числом
Этим мы доказали, что в результате, получившееся число не может быть равным 3/7
И второе, даже визуально этого не может быть, так как к числителю прибавили
число 2019 (несколько раз) более числа 2017 в знаменателе (также несколько раз), то есть число в числителе будет больше числа знаменателя и не может быть равным 3/7
-5/8082
Пошаговое объяснение:
первоначальная дробь 2/3
- n- число раз
- числитель 2+n*2019
- знаменатель 2+n*2017
- получившаяся дробь (2+n*2019)/(3+n*2017)
Чтобы проверить это приравняем получившуюся дробь к 3/7
(2+n*2019)/(3+n*2017)=3/7
7*(2+2019n)=3*(3+2017n)
14+14133n=9+6051n
14133n-6051n=9-14
8082=-5
n=-5/8082 - ответ отрицательный и дробный -число (n) раз не может быть отрицательным и дробным числом
Этим мы доказали, что в результате, получившееся число не может быть равным 3/7
И второе, даже визуально этого не может быть, так как к числителю прибавили
число 2019 (несколько раз) более числа 2017 в знаменателе (также несколько раз), то есть число в числителе будет больше числа знаменателя и не может быть равным 3/7
I I 1 на юг
I 3 на север
I
4 на запад
I
I
I 8 на север
I
I
8 + 3 - 1 = 10 (км)
ответ: на расстоянии 10км от начала пути находится охотник.