На данный момент времени возраст дочери = х лет, возраст матери = у лет. Утроенный возраст дочери = 3х лет. Возраст матери у на 2 года больше, чем 3х ⇒ у-3х=2 . Пять лет назад возраст матери = (у-5) лет, возраст дочери = (х-5) лет. Теперь удвоенный возраст матери = 2(у-5) лет. Возраст дочери, увеличенный в 9 раз = 9(х-5) лет. Возраст матери 2(у-5) на 9 больше, чем 9(х-5) ⇒ 2(у-5)-9(х-5)=9 . Упростим это уравнение: 2у-10-9х+45=9 2у-9х=-26 9х-2у=26
Два события называются равновероятными (или равновозможными) , если нет никаких объективных причин считать, что одно из них может наступить чаще, чем другое. Так, например, появления герба или надписи при бросании монеты представляют собой равновероятные события. Рассмотрим другой пример. Пусть бросают игральную кость. В силу симметрии кубика можно считать, что появление любой из цифр 1, 2, 3, 4, 5 или 6 одинаково возможно (равновероятно) . Неравновероятные события - это события, вероятность появления которых зависит от условий проведения эксперимента (зависимость прогноза погода от времени года) . Например, в сообщении о погоде в зависимости от сезона сведения о том, что будет - дождь или снег, могут иметь разную вероятность. Летом наиболее вероятно сообщение о дожде, зимой - о снеге, а в переходный период (в марте или ноябре) они могут оказаться равновероятными. Понятие "более вероятное событие" можно пояснить через родственные понятия: более ожидаемое, происходящее чаще в данных условиях.
возраст матери = у лет.
Утроенный возраст дочери = 3х лет.
Возраст матери у на 2 года больше, чем 3х ⇒ у-3х=2 .
Пять лет назад возраст матери = (у-5) лет,
возраст дочери = (х-5) лет.
Теперь удвоенный возраст матери = 2(у-5) лет.
Возраст дочери, увеличенный в 9 раз = 9(х-5) лет.
Возраст матери 2(у-5) на 9 больше, чем 9(х-5) ⇒ 2(у-5)-9(х-5)=9 .
Упростим это уравнение: 2у-10-9х+45=9
2у-9х=-26
9х-2у=26
ответ: 32 года и 10 лет.
Так, например, появления герба или надписи при бросании монеты представляют собой равновероятные события.
Рассмотрим другой пример. Пусть бросают игральную кость. В силу симметрии кубика можно считать, что появление любой из цифр 1, 2, 3, 4, 5 или 6 одинаково возможно (равновероятно) .
Неравновероятные события - это события, вероятность появления которых зависит от условий проведения эксперимента (зависимость прогноза погода от времени года) .
Например, в сообщении о погоде в зависимости от сезона сведения о том, что будет - дождь или снег, могут иметь разную вероятность. Летом наиболее вероятно сообщение о дожде, зимой - о снеге, а в переходный период (в марте или ноябре) они могут оказаться равновероятными. Понятие "более вероятное событие" можно пояснить через родственные понятия: более ожидаемое, происходящее чаще в данных условиях.