4. Какое из данных множеств не являются подмножествами А = {2, 3, 4, 0, 2, 5, 8, 46}? D= {0, 2, 4, 5, 2, 46, 3}; F= {2, 0, 5, 8, 3, 46, 10}; G= {3, 2, 3, 5, 8, 8}; R = {5, 2, 0, 8, 46}. А) R B) D C) F D) G <( ̄︶ ̄)>
пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х.
работая вместе, они сделали всю работу (равную 1) за 12 часов
уравнение:
(1/(х -18) + 1/х)·12 = 1
12·(х + х - 18) = х² - 18х
х² - 42х + 216 = 0
d = 42² - 4·216 = 900
√d = 30
х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! )
пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х.
работая вместе, они сделали всю работу (равную 1) за 12 часов
уравнение:
(1/(х -18) + 1/х)·12 = 1
12·(х + х - 18) = х² - 18х
х² - 42х + 216 = 0
d = 42² - 4·216 = 900
√d = 30
х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! )
х₂ = (42 + 30) : 2 = 36
ответ: 2-я труба наполняет бассейн за 36 часов
1)
пусть к - точка пересечения хорды ac и диаметра bd.
ok=kb=r\2
oa=ob=oc=od=r=ab=bc
ad=bd=корень((корень(3)*r\2)^2+(3*r\2)^2)=корень(3)*r
ak=bk=корень(3)\2*r
cos (koa)=(r\2)\r=1\2
угол koa=угол oba=угол obc=60 градусов
угол фис=60+60=120 градусов
в выпуклом вписанном четырёхугольнике сумма противоположных углов равна 180
поэтому угол adb=180-120=60 градусов
угол bad= углу bcd=180\2=90 градусов
градусные меры дуг ab, bc, cd, соотвественно равны углвой мере углов aob(=60 градусов), boc (=60 градусов), cod(180-60=120 градусов)
aod (=120 градусов)