В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Sterl
Sterl
17.08.2022 04:24 •  Математика

4 мин 40 с: 7=
180 с. 5=
9 мин 20 c – 210с=
230 c + 3 мин 50 с=
решите

Показать ответ
Ответ:
валерия821
валерия821
24.05.2021 18:12

Жиын ұғымы — математиканың негізінде жатқан жалпы ұғымдардың бірі. Сондықтан жиын ұғымының дәл анықтамасын беру мүмкін емес. Біз жиын деп нені түсінетінімізді ғана айта аламыз. Әдетте жиын ретінде әртүрлі объектілердің алдын ала берілген ерекшеліктері бойынша топтастырылуын айтамыз.

Жиындарды үлкен латын әріптері арқылы белгілейміз: {\displaystyle A,B,C,X,I,Z}{\displaystyle A,B,C,X,I,Z} және т.б. Жиынды қүрайтын объектілер осы жиынның элементтері деп аталады. Жиын элементтері кіші латын әріптерімен белгіленеді: {\displaystyle a,b,c,x,u,v}{\displaystyle a,b,c,x,u,v} және т. б. Қажет болғанда төменгі және жоғарғы индекстер еркін қолданылады.

Егер {\displaystyle x}{\displaystyle x} объектісі {\displaystyle A}{\displaystyle A} жиынының элементі болса, бұл жағдай {\displaystyle x\in A}{\displaystyle x\in A} белгісімен таңбаланады және "{\displaystyle x}{\displaystyle x} элементі {\displaystyle A}{\displaystyle A} жиынына тиісті" деп оқылады.

Егер {\displaystyle x}{\displaystyle x} объектісі {\displaystyle A}{\displaystyle A} жиынынан тыс болса, оны {\displaystyle x\notin A}{\displaystyle x\notin A} арқылы белгілеп, "{\displaystyle x}{\displaystyle x} элементі {\displaystyle A}{\displaystyle A} жиынына тиісті емес" деп оқимыз.

Қоршаған орта немесе ғылыми пәндердің қай-қайсысы болса да жиын ұғымына қажетті мысалдардың кез келген түрін бере алады. Айталық, өсімдіктер түрлері, кітаптар, жай сандар, жазықтықтағы түзулер - жиын ұғымының мысалдары. Алғашқы екеуі ақырлы жиындардың мысалын берсе, соңғы екеуі ақырсыз жиындардың мысалы болады.

Жиындарды олардың элементтерінің тізімін немесе олардың элементеріне ортақ қасиеттерді көрсету жолымен беруге болады. Мысалы, {\displaystyle A=\{a_{1},a_{2},\ldots ,a_{n}\}}{\displaystyle A=\{a_{1},a_{2},\ldots ,a_{n}\}} жэне {\displaystyle B=\{x|x-}{\displaystyle B=\{x|x-}тақ сан {\displaystyle \}}{\displaystyle \}} . Осы екі жолмен анықталған, бірі ақырлы, бірі ақырсыз жиындардың мысалдары бола алады.

Жиындардың мысалдары:

{\displaystyle \mathbb {N} =\{0,1,2,3,\ldots \}}{\displaystyle \mathbb {N} =\{0,1,2,3,\ldots \}} - натурал сандар жиыны;

{\displaystyle \mathbb {Z} =\{0,\pm 1,\pm 2,\pm 3,\ldots \}}{\displaystyle \mathbb {Z} =\{0,\pm 1,\pm 2,\pm 3,\ldots \}} - бүтін сандар жиыны;

{\displaystyle \mathbb {Q} =\{{\frac {m}{n}}|m\in \mathbb {Z} ,n\in \mathbb {N} \}}{\displaystyle \mathbb {Q} =\{{\frac {m}{n}}|m\in \mathbb {Z} ,n\in \mathbb {N} \}} - рационал сандар жиыны;

{\displaystyle \mathbb {R} }{\displaystyle \mathbb {R} } - нақты сандар жиыны кеңінен қолданылады.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
spfpspfpspdps
spfpspfpspdps
10.09.2020 22:45

1.А) Уравнением называется равенство, содержащее одно или несколько неизвестных, значение которых необходимо найти.

2. верный ответ Значение переменной, при котором уравнение обращается в верное  равенство.

среди предложенных не нашел.

3. линейным называют уравнение, в котором переменная /или переменные/ входят в первой степени, не равны нулю. можем еще так сказать

это уравнение вида ах+b=c

ax+by=c , где a, b, c - некоторые числа, х и у -переменные. причем а≠0, если речь об уравнении с двумя переменными, то а≠0;b≠0.

4. квадратное - это уравнение вида ах²+bx+c=0, где а,b,с - некоторые числа, причем а≠0, х и у-переменные.

5. Неравенство вида ах+b<0 (ах+b≤0, ах+b>0, ах+b≥0).где а≠0.

6. А) Уравнение имеет два равных действительных корня. но при условии, что решаем уравнение в области действительных чисел. иначе ответ Е.

7. А) Уравнение имеет два различных действительных корня. если речь о решении кв. уравнения в области действительных чисел.

иначе ответ Е.

8. А) Уравнение не имеет действительных корней.

9.D=b²-4ас

10. А) Уравнения, имеющие одно и то же множество решений

11. 7х-8=2х-3⇒А)х=1

12. 3-4х=5+8х⇒12х=-2, х=-1/6, верного ответа нет.

13. 7-х=-4+10х; х=1

14. 4х-4=6+3х⇒А)х=10

15. А) -0.5

16. 7-3х-3=х-1⇒А)1.25

17. -15+3х=2х-19⇒А)-4

18. 3-2х<5-3х⇒А) x<2

19. 5х+6>3х-2⇒А) x>-4

20. 3х-5≥23-4х⇒А) x≥4

21. По Виету А) 4;-2

22. 3х²-2х-1=0−1

здесь два ответа . ноль и 2/3

23. у=х+1 целая прямая ответов. подходят А, С,

24.-  нет системы

25.аналогично.

26. аналогично

27 нет

28. 10х²-х+1=0  А) Не имеет действительных корней

29 нет уравнения

30нет неравенства. но больше половины, как требуют правила, я решил вам.

bb

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота