4. найти наибольшее и наименьшее значение функции в замкнутой области:
z=x^2-xy+y^2-4x в треугольнике, ограниченном прямыми x=0, y=0, 2x+3y-12=0
5. представить двойной интеграл ∬_d▒f(x,y)dxdy в виде повторного интеграла с внешним интегрированием по x и внешним интегрированием по y, если область d задана указанными линиями:
d: y=√(4-x^2 ),y=√3x,x≥0
6. вычислить интеграл: ∫_0^3▒dx ∫_(x^2)^x▒(x^2+y)dy
7. вычислить интеграл: ∬_d▒ydxdy, если d: y=7/x; y=2; x=0
ответ: 8 см
1. Длина прямоугольника 8 см, ширина - 6 см. Найти площадь прямоугольника.
S = ab = 8*6 = 48 (см²)
2. Площадь прямоугольника 48 см². Найти ширину, если его длина 8 см.
S= ab => b = S/a = 48/8 = 6 (см)
Ну и на сладкое...)))
3. Длина прямоугольника на 2 см больше его ширины. Найти стороны прямоугольника, если его площадь составляет 48 см².
m = n+2 => S = mn = (n+2)n = n²+2n
n²+2n = 48
n²+2n-48=0 D=b²-4ac= 4+192 =196 = 14²
n₁=(-b+√D)/2a = 6
n₂=(-b-√D)/2a = -8 (не удовлетворяет условию)
n = 6 см, m = 6+2 = 8 см
ответ: 8см; 6 см
A) 31 ; 37 ; 41 ; 43 ; 47
B) 32; 33; 34; 35; 36; 38; 39; 40; 42; 44; 45; 46; 48; 49
Пошаговое объяснение:
Простое число — натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя - единицу и самого себя. Другими словами, число А является простым, если оно больше 1 и при этом делится без остатка только на 1 и на А.
Натуральные числа, которые больше единицы и не являются простыми, называются составными. Для определения свойства числа как составное, достаточно указать только одного делителя строго между 1 и самим числом. Все четные натуральные числа, кроме 2 (которое единственное четное простое число) имеют число 2 как делитель.
A) Простые числа,большие 30, но меньше 50: 31 ; 37 ; 41 ; 43 ; 47
B) Все составные числа, большие 30, но меньше 50:
32, 34, 36, 38, 40, 42, 44, 46, 48 - четные числа, то есть делятся на 2.
33 - делится на 3
35 - делится на 5
39 - делится на 3
45 - делится на 5
49 - делится на 7