t(t−1\5)(9+t)≤0 - решаем классическим методом интервалов. Неравенство представлено в каноническом виде (переменная минус число). Найдём корни, при которых каждый множитель обращается в ноль:
0; 1/5; -9
Расположим их в порядке возрастания на числовой оси - получим 4 интервала. Посчитаем в каждом из них знак неравенства - слева направо знаки:
"-","+","-" и "+", выбираем интервалы, на которых знак "минус" поскольку знак неравенства ≤0, получаем интервал:
t∈(-∞;-9] ∪ [0;1/5]
Пошаговое объяснение:
t(t−1\5)(9+t)≤0 - решаем классическим методом интервалов. Неравенство представлено в каноническом виде (переменная минус число). Найдём корни, при которых каждый множитель обращается в ноль:
0; 1/5; -9
Расположим их в порядке возрастания на числовой оси - получим 4 интервала. Посчитаем в каждом из них знак неравенства - слева направо знаки:
"-","+","-" и "+", выбираем интервалы, на которых знак "минус" поскольку знак неравенства ≤0, получаем интервал:
t∈(-∞;-9] ∪ [0;1/5]