Поскольку x- самая длинная палочка из разрезанных, то сумма длины этой палочки с любой другой больше длины любой из оставшихся палочек.
Пусть длины других палочек равны: a,b,c.
Причем:
x>=a>=b>=c
Тогда, поскольку треугольники состоящие из стороны x и каких-то двух из сторон a,b,c не существуют, то учитывая вышесказанное, остается только не выполнение такого неравенства треугольника: (ибо остальные неравенства, где x будет слева не могут быть не выполнены):
a+b>x
Иначе говоря, нам нужно неравенство:
a+b<=x
Неравенства:
a+c<=x и b+c<=x являются следствием первого неравенства и условия
x>=a>=b>=c>0, поэтому эти неравенства нам не нужны.
Для треугольника, что не содержит сторону x по аналогии с предыдущими рассуждениями необходимо выполнение неравенства:
b+c<=a
Итак, мы имеем условие и два неравенства:
x>=a>=b>=c>0
a+b<=x
b+c<=a
Из неравенств:
b>=c>0
a+b<=x
b+c<=a
Следует неравенство: x>=a>=b, поэтому оно является лишним.
Основополагающими являются неравенства:
a+b<=x
b+c<=a
b>=c>=0
Поскольку разрезали палку в 1 метр, то верно равенство:
a+b+c+x = 1
Наша цель найти такое представление:
a =nx
b = mx
c = rx
x = 1/(n+m+r +1)
Чтобы: n+m+r = t - было наибольшим и выполнялись все неравенства, что описаны выше. n = t - (m+r); x = 1/(t+1)
При этом длина x будет наименьшей из возможных.
Сокращая обе части неравенств на x, учтя, что x>0, получим:
n+m <= 1
m+r <= n
r <= m
r>0
Или:
t-(m+r) + m <=1
m+r <= t- (m+r)
r<=m
То есть:
t-1 <= r
t>= 2(m+r)
m>=r
Откуда:
t>=2(m+r)
m>=r>=t-1
t>= 2(2(t-1))
t>= 4t - 4
3t<=4
t<= 4/3
tmax = 4/3
Откуда:
xmin = 1/(1+4/3) = 1/(7/3) = 3/7
В этом случае есть один вариант как выбрать a,b,c:
ответ: 3/7
Пошаговое объяснение:
Поскольку x- самая длинная палочка из разрезанных, то сумма длины этой палочки с любой другой больше длины любой из оставшихся палочек.
Пусть длины других палочек равны: a,b,c.
Причем:
x>=a>=b>=c
Тогда, поскольку треугольники состоящие из стороны x и каких-то двух из сторон a,b,c не существуют, то учитывая вышесказанное, остается только не выполнение такого неравенства треугольника: (ибо остальные неравенства, где x будет слева не могут быть не выполнены):
a+b>x
Иначе говоря, нам нужно неравенство:
a+b<=x
Неравенства:
a+c<=x и b+c<=x являются следствием первого неравенства и условия
x>=a>=b>=c>0, поэтому эти неравенства нам не нужны.
Для треугольника, что не содержит сторону x по аналогии с предыдущими рассуждениями необходимо выполнение неравенства:
b+c<=a
Итак, мы имеем условие и два неравенства:
x>=a>=b>=c>0
a+b<=x
b+c<=a
Из неравенств:
b>=c>0
a+b<=x
b+c<=a
Следует неравенство: x>=a>=b, поэтому оно является лишним.
Основополагающими являются неравенства:
a+b<=x
b+c<=a
b>=c>=0
Поскольку разрезали палку в 1 метр, то верно равенство:
a+b+c+x = 1
Наша цель найти такое представление:
a =nx
b = mx
c = rx
x = 1/(n+m+r +1)
Чтобы: n+m+r = t - было наибольшим и выполнялись все неравенства, что описаны выше. n = t - (m+r); x = 1/(t+1)
При этом длина x будет наименьшей из возможных.
Сокращая обе части неравенств на x, учтя, что x>0, получим:
n+m <= 1
m+r <= n
r <= m
r>0
Или:
t-(m+r) + m <=1
m+r <= t- (m+r)
r<=m
То есть:
t-1 <= r
t>= 2(m+r)
m>=r
Откуда:
t>=2(m+r)
m>=r>=t-1
t>= 2(2(t-1))
t>= 4t - 4
3t<=4
t<= 4/3
tmax = 4/3
Откуда:
xmin = 1/(1+4/3) = 1/(7/3) = 3/7
В этом случае есть один вариант как выбрать a,b,c:
b=c = 1/7, a = 2/7, x = 3/7
Пошаговое объяснение:
x^6 - 21x^4 + 6x^3 + 105x^2 - 125 = 0
Запишем это уравнение со всеми степенями x:
x^6 + 0x^5 - 21x^4 + 6x^3 + 105x^2 + 0x - 125 = 0
Нарисуем схему Горнера.
x | 1 | 0 | -21 | 6 | 105 | 0 | -125
-5| 1 | -5| 4 | -14 | 175|-875|4000+ > 0
-4| 1 | -4| -5 | 26| 1 _| -4 | -109 < 0
-3| 1 | -3| -12| 42|-21 | 63| -314 < 0
-2| 1| -2| -17 | 40| 25 |-50| -25 < 0
-1| 1 |-1 | -20 | 26| 79|-79 | -46 < 0
1 | 1 | 1 | -20 | -14| 91 | 91 | -34 < 0
2| 1 | 2 | -17 | -28| 49| 98 | 71 > 0
Как видим, это уравнение имеет два иррациональных корня:
x1 ∈ (-5; -4); x2 ∈ (1; 2)
Это отрезки, на которых последнее значение меняет знак.
Уточняем эти корни. Обозначим f(x) левую часть уравнения.
f(x) = x^6 - 21x^4 + 6x^3 + 105x^2 - 125
1) f(-4,2) = (-4,2)^6 - 21(-4,2)^4 + 6(-4,2)^3 + 105(-4,2)^2 - 125 ≈ 237 > 0
f(-4,1) = (-4,1)^6 - 21(-4,1)^4 + 6(-4,1)^3 + 105(-4,1)^2 - 125 ≈ 42,5 > 0
f(-4,08) = (-4,08)^6 - 21(-4,08)^4 + 6(-4,08)^3 + 105(-4,08)^2 - 125 ≈ 9 > 0
f(-4,07) = (-4,07)^6 - 21(-4,07)^4 + 6(-4,07)^3 + 105(-4,07)^2 - 125 ≈ -7 < 0
f(-4,075) = (-4,075)^6 - 21(-4,075)^4 + 6(-4,075)^3 + 105(-4,075)^2 - 125 ≈ 0,8
x1 ≈ -4,075
2) f(1,2) = (1,2)^6 - 21(1,2)^4 + 6(1,2)^3 + 105(1,2)^2 - 125 ≈ -4 < 0
f(1,3) = (1,3)^6 - 21(1,3)^4 + 6(1,3)^3 + 105(1,3)^2 - 125 ≈ 10 > 0
f(1,23) = (1,23)^6 - 21(1,23)^4 + 6(1,23)^3 + 105(1,23)^2 - 125 ≈ 0,42
f(1,227) = (1,227)^6 - 21(1,227)^4 + 6(1,227)^3 + 105(1,227)^2 - 125 ≈ -0,02
x2 ≈ 1,227