405. 8 м сым өзара тең: а) 3 бөлікке; б) 16 бөлікке; ө) 24 бөлікке; в) 6 бөлікке бөлінді. Бiр бөлiк сымның ұзындығын бөлшек түрінде жазып көрсетіңдер. скажите
Для получения максимального частного нужен минимальный делитель, то есть сумма цифр трёхзначного числа должна быть минимальной. Для этого оставим разряды единиц и десятков нулевыми (разряд сотен в трёхзначном числе нулевым быть не может). Так как нам придётся делить количество сотен на цифру, стоящую в разряде сотен, мы всегда получим частное 100 (900 : 9 = 100; 200 : 2 = 100). Любое изменение в разрядах единиц или десятков приведёт к увеличению делителя, а значит к уменьшению частного (901 : 10 = 90,1; 210 : 3 = 70).
ответ: наибольшее значение отношения трёхзначного числа к сумме его цифр - 100.
Две двухрублевые монеты должны лежать в одном кармане. Значит, либо эти две монеты переложили во второй карман, либо после перекладывания трех монет они остались в первом кармане.
Случаи, когда две двухрублевые монеты переложили во второй карман (для удобства обозначим двухрублевую монету - 2, монету в один рубль - 1):
1) 1, 2, 2 2) 2, 1, 2 3) 2, 2, 1
Случай, когда обе двухрублевые монеты остались в первом кармане (это значит, что во второй карман переложили только монеты по одному рублю):
4) 1, 1, 1
Посчитаем вероятность первого события: 1, 2, 2.
Всего монет 4+2 = 6. Перекладываем монету в 1 рубль. Благоприятных событий 4 (т.к. всего 4 монеты по 1 рублю). Вероятность того, что первой будет переложена монета в один рубль
Теперь монет осталось 5, а двухрублевых монет 2. Вероятность того, что второй будет переложена монета в 2 рубля
Осталось 4 монеты. Из них одна монета в 2 рубля. Вероятность того, что третьей монетой будет преложена монета в 2 рубля
Вероятность того, что во второй карман будут переложены монеты: 1, 2, 2.
Рассмотрим второй случай: 2, 1, 2. Вероятность того, что сначала будет переложена монета в 2 рубля
Вероятность того, что второй будет переложена монета в 1 рубль
Вероятность того, что третьей будет переложена монета в 2 рубля
Вероятность события, что будут переложены монеты 2, 1, 2:
Посчитаем вероятность третьего случая: 2, 2, 1
Вероятность того, что первой переложена будет монета в 2 рубля
Вероятность того, что второй будет переложена монета в 2 рубля
Вероятность того, что третьей будет переложена монета в 1 рубль
Вероятность наступления события, что будут переложены монеты 2, 2, 1
Посчитаем вероятность наступления четвертого события: 1, 1, 1.
Вероятность того, что первой будет переложена монета в 1 рубль
Вероятность того, что второй будет переложена монета в 1 рубль
Вероятность того, что третьей будет переложена монета в 1 рубль
Вероятность того, что переложены будут монеты 1, 1, 1:
Нас устраивает наступление любого из рассмотренных четырех событий, поэтому все эти вероятности складываем.
ответ: наибольшее значение отношения трёхзначного числа к сумме его цифр - 100.
Случаи, когда две двухрублевые монеты переложили во второй карман
(для удобства обозначим двухрублевую монету - 2, монету в один рубль - 1):
1) 1, 2, 2
2) 2, 1, 2
3) 2, 2, 1
Случай, когда обе двухрублевые монеты остались в первом кармане (это значит, что во второй карман переложили только монеты по одному рублю):
4) 1, 1, 1
Посчитаем вероятность первого события: 1, 2, 2.
Всего монет 4+2 = 6. Перекладываем монету в 1 рубль. Благоприятных событий 4 (т.к. всего 4 монеты по 1 рублю).
Вероятность того, что первой будет переложена монета в один рубль
Теперь монет осталось 5, а двухрублевых монет 2.
Вероятность того, что второй будет переложена монета в 2 рубля
Осталось 4 монеты. Из них одна монета в 2 рубля.
Вероятность того, что третьей монетой будет преложена монета в 2 рубля
Вероятность того, что во второй карман будут переложены монеты: 1, 2, 2.
Рассмотрим второй случай: 2, 1, 2.
Вероятность того, что сначала будет переложена монета в 2 рубля
Вероятность того, что второй будет переложена монета в 1 рубль
Вероятность того, что третьей будет переложена монета в 2 рубля
Вероятность события, что будут переложены монеты 2, 1, 2:
Посчитаем вероятность третьего случая: 2, 2, 1
Вероятность того, что первой переложена будет монета в 2 рубля
Вероятность того, что второй будет переложена монета в 2 рубля
Вероятность того, что третьей будет переложена монета в 1 рубль
Вероятность наступления события, что будут переложены монеты 2, 2, 1
Посчитаем вероятность наступления четвертого события: 1, 1, 1.
Вероятность того, что первой будет переложена монета в 1 рубль
Вероятность того, что второй будет переложена монета в 1 рубль
Вероятность того, что третьей будет переложена монета в 1 рубль
Вероятность того, что переложены будут монеты 1, 1, 1:
Нас устраивает наступление любого из рассмотренных четырех событий, поэтому все эти вероятности складываем.
ответ: 0,4