В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ArtSvet
ArtSvet
26.01.2022 11:53 •  Математика

423есеп. Натурал санды аралас сан түрінде жазып, кестені толтырыңдар. Заранее


423есеп. Натурал санды аралас сан түрінде жазып, кестені толтырыңдар. Заранее

Показать ответ
Ответ:
AelitaFox
AelitaFox
22.04.2020 03:52
Обозначим площадь грани кубика за а.
Пусть в ряду имеется х кубиков. Тогда, у крайнего левого и крайнего правого в площади поверхности учитываются 5 сторон, у остальных - 4 стороны. Находим площадь поверхности:
для крайних двух кубиков: 2\cdot5\cdot a=10a
для остальных (х-2) кубиков: (x-2)\cdot4\cdot a=4a(x-2)
общая: 10a+4a(x-2)=10a+4ax-8a=4ax+2a=(4x+2)a
Пусть после добавления кубиков их устало у штук. Общая площадь поверхности в этом случае будет равна (4y+2)a. По условию она увеличилась в k раз. Получаем равенство:
(4x+2)a\cdot k=(4y+2)a
\\\
(4x+2)\cdot k=4y+2
Как видно и выражение 4x+2 и выражение 4y+2 при делении на 4 дает остаток 2. Однако при четном k=2n возникает противоречие:
(4x+2)\cdot 2n=4y+2
\\\
4(2x+1)\cdot n=4y+2
 - левая часть кратна 4, в то время как правая по-прежнему при делении на 4 дает остаток 2. Значит k не может быть четным числом, и значение 6 недопустимо.
ответ: 6
0,0(0 оценок)
Ответ:
ппср
ппср
22.04.2020 03:52
Обозначим площадь грани кубика за а.
Пусть в ряду имеется х кубиков. Тогда, у крайнего левого и крайнего правого в площади поверхности учитываются 5 сторон, у остальных - 4 стороны. Находим площадь поверхности:
для крайних двух кубиков: 2\cdot5\cdot a=10a
для остальных (х-2) кубиков: (x-2)\cdot4\cdot a=4a(x-2)
общая: 10a+4a(x-2)=10a+4ax-8a=4ax+2a=(4x+2)a
Пусть после добавления кубиков их устало у штук. Общая площадь поверхности в этом случае будет равна (4y+2)a. По условию она увеличилась в k раз. Получаем равенство:
(4x+2)a\cdot k=(4y+2)a \\\ (4x+2)\cdot k=4y+2
Как видно и выражение 4x+2 и выражение 4y+2 при делении на 4 дает остаток 2. Однако при четном k=2n возникает противоречие:
(4x+2)\cdot 2n=4y+2 \\\ 4(2x+1)\cdot n=4y+2
 - левая часть кратна 4, в то время как правая по-прежнему при делении на 4 дает остаток 2. Значит k не может быть четным числом, и значение 6 недопустимо.
ответ: 6
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота