Так как по условию число делится на 5, то оно должно оканчиваться на 0 или 5
1) Рассмотрим случай, когда число оканчивается на 0. Тогда предыдущие три позиции будут заняты тремя цифрами из четырех: 1,3,5,7. То есть, нам требуется найти число размещений из 4 элементов по 3: А(4,3)=4!=1·2·3·4=24
Итак, получили 24 четырехзначных числа, оканчивающихся на 0.
2) Рассмотрим случай, когда число оканчивается на 5. Тогда предыдущие три позиции будут заняты тремя цифрами из 0,1,3,7. Аналогично предыдущему случаю получим 24 варианта.
Но! Так как 0 не может стоять на первой позиции ( иначе число становится трехзначным), то необходимо исключить варианты: 013, 031, 017, 071, 037, 073. Тогда получаем 24-6=18 четырехзначных числа, оканчивающихся на 5
Итого, общее количество четырехзначных чисел: 24+18=42
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
42
Пошаговое объяснение:
Так как по условию число делится на 5, то оно должно оканчиваться на 0 или 5
1) Рассмотрим случай, когда число оканчивается на 0. Тогда предыдущие три позиции будут заняты тремя цифрами из четырех: 1,3,5,7. То есть, нам требуется найти число размещений из 4 элементов по 3: А(4,3)=4!=1·2·3·4=24
Итак, получили 24 четырехзначных числа, оканчивающихся на 0.
2) Рассмотрим случай, когда число оканчивается на 5. Тогда предыдущие три позиции будут заняты тремя цифрами из 0,1,3,7. Аналогично предыдущему случаю получим 24 варианта.
Но! Так как 0 не может стоять на первой позиции ( иначе число становится трехзначным), то необходимо исключить варианты: 013, 031, 017, 071, 037, 073. Тогда получаем 24-6=18 четырехзначных числа, оканчивающихся на 5
Итого, общее количество четырехзначных чисел: 24+18=42
ответ: Нет.
Пошаговое объяснение:Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.