Обозначим сторону маленького квадрата за х. Тогда площадь основания коробки будет равна S=(a-2x)^2, а объем коробки будет равен V=(a-2x)^2*x=a^2*x-4*a*x^2+4*x^3. Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x: x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24 x1=1/6*a x2=1/2*a Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a).. А x=1/6*a является точкой максимума функции объема. ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.
Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x:
x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24
x1=1/6*a
x2=1/2*a
Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a)..
А x=1/6*a является точкой максимума функции объема.
ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.
Пошаговое объяснение:
1) - 5) в прикрепленном файле
6)y= 3-4x+x²
всё, что требуется ищем через первую производную
y'= (3-4x+x²)/ = 2x-4
2x-4=0 ⇒ x₁ = 2 - точка экстремума, также точка смены знака
(-∞; 2 ) y'(0) = -4 <0 - функция убывает
(2; +∞ ) y'(3) = 2 >0 - функция возрастает
[-5;5]
точка экстремума х=2 входит в отрезок. поэтому считаем значение функции в этой точке и на концах отрезка
y(2) = -1
y(-5) = 46
y(5) = 8
на отрезке [-5;5] минимум функции достигается в точке локального минимума и равен
y(2) = -1