Давайте попробуем найти закономерность. 1111:11=101, т.е. число содержащее 4 единицы делим на 11 и получаем 2 единицы и 1 ноль. Таким образом 4единицы:2единицы=2единицы и 2-1=1 ноль 111111:11=10101, т.е. число содержащее 6 единиц делим на 11 и получаем 3 единицы и 2 ноля. Таким образом 6единиц:2единицы=3единицы и 3-1=2 ноля 11111111:11=1010101, т.е. число содержащее 8 единицы делим на 11 и получаем 4 единицы и 3 ноля. Таким образом 8единицы:2единицы=4единицы и 4-1=3 ноля
Следовательно, если число содержащее 2016 единиц разделить на 11 мы получим: 2016единиц:2единицы=1008единиц и 1008-1=1007 нолей
7
Пошаговое объяснение:
Каждый раз смотрим только на последние цифры
33^1 оканчиватся 3(3*1=3)
33^2=33^1*33 оканчивается 9(3*3=9)
33^3=33^2*33 оканчивается 7(9*3=27)
33^4=33^3*33 оканчивается 1(7*3=21)
33^5=33^4*33 оканчивается 3(1*3=3)
33^6=33^5=33 оканчивается 9(3*3=9
...
...
Очевидно, что степени будут повторяться каждые 4 умножения(окончаниями 33^1, 33^5, 33^9, 33^13, 33^(13+4n) ... будет цифра 3)
33^(1+4n) оканчивается на 3
33^(2+4n) оканчивается на 9
33^(3+4n) оканчивается на 7
33^(4n) оканчивается на 1
Где n-целое неотрицательные число.
Поделим 2015 на 4 с остатком:2015=503*4(ост. 3)
33^2015=33^(3+4*503) имеет такую же последнюю цифру, как и 33^3 равную 7
1111:11=101, т.е.
число содержащее 4 единицы делим на 11 и получаем 2 единицы и 1 ноль. Таким образом 4единицы:2единицы=2единицы и 2-1=1 ноль
111111:11=10101, т.е.
число содержащее 6 единиц делим на 11 и получаем 3 единицы и 2 ноля. Таким образом 6единиц:2единицы=3единицы и 3-1=2 ноля
11111111:11=1010101, т.е.
число содержащее 8 единицы делим на 11 и получаем 4 единицы и 3 ноля. Таким образом 8единицы:2единицы=4единицы и 4-1=3 ноля
Следовательно, если число содержащее 2016 единиц разделить на 11 мы получим:
2016единиц:2единицы=1008единиц и 1008-1=1007 нолей