Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
70 + 30 * 9 - 5 = 70 + 270 - 5 = 340 - 5 = 335
(70 + 30) * 9 - 5 = 100 * 9 - 5 = 900 - 5 = 895
70 + 30 * ( 9 - 5) = 70 + 30 * 4 = 70 + 120 = 190
560 - 240 : 8 + 4 = 560 - 30 + 4 = 530 + 4 = 534
560 - 240 : ( 8 + 4) = 560 - 240 : 12 = 560 - 20 = 540
(560 - 240) : 8 + 4 = 320 : 8 + 4 = 40 + 4 = 44
- Чем они похожи?
Одинаковые числа, одинаковые знаки действий.
- Чем различаются?
ответом. Тем, что в некоторых выражениях добавлены скобки.
- Зависит ли значение выражения от порядка выполнения действий?
Да. Наличие скобок изменило порядок действий в выражениях, именно поэтому получены разные ответы.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
70 + 30 * 9 - 5 = 70 + 270 - 5 = 340 - 5 = 335
(70 + 30) * 9 - 5 = 100 * 9 - 5 = 900 - 5 = 895
70 + 30 * ( 9 - 5) = 70 + 30 * 4 = 70 + 120 = 190
560 - 240 : 8 + 4 = 560 - 30 + 4 = 530 + 4 = 534
560 - 240 : ( 8 + 4) = 560 - 240 : 12 = 560 - 20 = 540
(560 - 240) : 8 + 4 = 320 : 8 + 4 = 40 + 4 = 44
- Чем они похожи?
Одинаковые числа, одинаковые знаки действий.
- Чем различаются?
ответом. Тем, что в некоторых выражениях добавлены скобки.
- Зависит ли значение выражения от порядка выполнения действий?
Да. Наличие скобок изменило порядок действий в выражениях, именно поэтому получены разные ответы.