В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vvoovv123
vvoovv123
16.08.2020 14:59 •  Математика

4с\cdot \left(3a-2\right)-6a\cdot \left(2c+1\right) с

Показать ответ
Ответ:
matveykatvey13
matveykatvey13
05.01.2023 02:28

ответ: Обозначим расстояние от дома до школы через s, а время, которое Коля затрачивает на поездку до школы, двигаясь на велосипеде со скоростью v = 10 км/ч, через t.

Тогда можем составить уравнение:

s = v * t = 10 * t.

Заметим, что 12 минут = 1/5 часа. Если Коле надо ехать со скоростью v1 = 15 км/ч, чтобы проехать расстояние s до школы за время t1 = t - 1/5, то можем составить второе уравнение:

s = v1 * t1 = 15 * (t - 1/5).

Следовательно, имеем:

s = 10 * t = 15 * (t - 1/5),

10 * t = 15 * t - 3,

5 * t = 3,

t = 3/5 часа.

s = 10 * t = 10 * 3/5 = 6 км.

ответ: 6 км.

0,0(0 оценок)
Ответ:
vinokurovbob
vinokurovbob
14.06.2020 17:12
1. f`(x) = 21x^2 - 4x
   f`(1) = 21*1^2 - 4*1 = 21 - 4 = 17.
2. f`(x) = 6x^2 - 12x.
6x^2 - 12x = 0, 6x(x - 2) = 0, x = 0, x = 2 - критические точки. Первая точка не принадлежит отрезку [1; 4].
f(2) = 2*2^3 - 6*2^2 + 7 = 16 - 24 + 7 = -1.
f(1) = 2*1^3 - 6*1^2 + 7 = 2 - 6 + 7 = 3. 
f(4) = 2*4^3 - 6*4^2 + 7 = 128 - 96 + 7 = 39.
max f(x) = f(4) = 39, min f(x) = f(2) = -1.
3.
а) Область определения функции - вся числовая прямая.
Проверим функцию на чётность/нечётность:
f(-x) = (-x)^3 +3*(-x)^2 + 2.
f(-x) =/ f(x), f(-x) =/ -f(x) , значит, данная функция не является чётной или нечётной. Функция непериодическая.
б) Асимптоты, поведение функции на бесконечности.
Так как функция непрерывна, то вертикальные асимптоты отсутствуют.
k =  lim            f(x)  = lim x^3 + 3x^2 + 2 = +беск.
     x->беск        x                     x
Нет и наклонных асимптот.
Выясним, как ведёт себя функция на бесконечности:
  lim          x^3 + 3x^2 + 2 = + беск.
x-> +беск
Если идём вправо, то график уходит бесконечно вверх, если влево – бесконечно вниз.
Таким образом, функция не ограничена сверху и не ограничена снизу. Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции - любое действительное число.
в) Нули функции и интервалы знакопостоянства.
Пересечение графика с осью У:
x = 0 -> f(0) = 2.
Пересечение графика с осью X:
f(x) = 0 -> x^3 + 3x^2 + 2 = 0.
Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. 

г) Возрастание, убывание и экстремумы функции.
Найдём критические точки: f`(x) = 3x^2 + 6x.
3x^2 + 6x = 0, 3x(x + 2) = 0, x = -2, x = 0.
   +      -        +
++
      -2       0 
Следовательно, функция возрастает на (-беск; -2)u(0; +беск) и убывает на (-2; 0).
f(-2) = -8 + 12 + 2 = 6 - максимум.
f(0) = 0 + 0 + 2 = 2 - минимум.
д) Выпуклость, вогнутость и точки перегиба.
Найдём критические точки второй производной:
f``(x) = 6x + 6 = 0. x = -1.
Определим знаки f``(x):
   -      +
+
      -1
График функции является выпуклым на (-1; +беск) и вогнутым на (-беск; -1). Вычислим ординату точки перегиба: f(-1) = -1 + 3 + 2 = 4.
е) Найдем дополнительные точки, которые точнее построить график 
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота