Вычислили длину окружности, радиус окружности, площадь окружности, диаметр окружности.
1. L = 14,444 см
2. L = 15,7 дм
3. r = 1,27 см
4. S = 12,56 см²
5. d = 6,78 см
Пошаговое объяснение:
Требуется найти длину окружности, радиус окружности, площадь окружности, диаметр окружности.
Будем считать значение π = 3,14
1. Вычислим длину окружности, зная ее диаметр.
Чтобы найти длину окружности, вспомним ее формулу:
, где r - радиус окружности, а d - ее диаметр.
Знаем d = 4,6 см.
Подставим значение d в формулу:
2. Вычислим длину окружности, зная радиус r =2,5 дм.
(дм)
3. Вычислим радиус, зная длину окружности L = 8 см.
Выразим радиус из формулы длины окружности:
Подставим значение L в формулу:
4. Вычислить площадь круга, зная радиус r = 2 см.
Площадь круга равна:
Подставим данное значение радиуса:
5. Найти диаметр, зная площадь.
Выразим радиус из формулы площади круга:
Найдем радиус:
Вычислили все искомые величины:
Вычислили длину окружности, радиус окружности, площадь окружности, диаметр окружности.
1. L = 14,444 см
2. L = 15,7 дм
3. r = 1,27 см
4. S = 12,56 см²
5. d = 6,78 см
Пошаговое объяснение:
Требуется найти длину окружности, радиус окружности, площадь окружности, диаметр окружности.
Будем считать значение π = 3,14
1. Вычислим длину окружности, зная ее диаметр.
Чтобы найти длину окружности, вспомним ее формулу:
, где r - радиус окружности, а d - ее диаметр.
Знаем d = 4,6 см.
Подставим значение d в формулу:
2. Вычислим длину окружности, зная радиус r =2,5 дм.
(дм)
3. Вычислим радиус, зная длину окружности L = 8 см.
Выразим радиус из формулы длины окружности:
Подставим значение L в формулу:
4. Вычислить площадь круга, зная радиус r = 2 см.
Площадь круга равна:
Подставим данное значение радиуса:
5. Найти диаметр, зная площадь.
Выразим радиус из формулы площади круга:
Найдем радиус:
Диаметр равен двум радиусам.Вычислили все искомые величины:
1. L = 14,444 см
2. L = 15,7 дм
3. r = 1,27 см
4. S = 12,56 см²
5. d = 6,78 см
1) скорее всего так... (e^x + e^(x+y))dx - e^y dy=0 ,
тогда-
Д.У. с разделяющимися переменными.
(e^x )dx = [(e^y )/(1+ e^y)]dy
∫(e^x )dx =∫[(e^y )/(1+ e^y)]dy
e^x =ln(1+ e^y)+c
2)
y'+ y - e^(2x) =0 y'+ y = e^(2x) линейное Д.У
решим методом Бернулли , полагаем y=uv,где u=u(x)≠0, v=v(x)≠0,
y¹=u¹v+uv¹ , подставим в исходное уравнение:
u¹v+uv¹+uv = e^(2x )
рассмотрим
uv¹+uv =0
u¹v = e^(2x)
решаем первое уравнение системы
⇔u(dv/dx+v) =0 ⇔(dv/dx+v) =0 ⇔dv/dx=-v⇔dv/v=-dx ⇔lnv=-x
⇔ v=e^(-x)
и подставим во второе уравнение системы
u¹ e^(-x)= e^(2x) ⇔(du/dx)e^(-x)= e^(2x ) ⇔(du/dx)= e^(3x )⇔
u=(1/3)e^(3x )+c
y=uv ⇔ u=(1/3)e^(3x )+c v=e^(-x)
ответ:
y=[(1/3)e^(3x )+c]·e^(-x)
3)y" - 3y' + 2y =0
линейное однородное с постоянными коэффициентами.
характеристическое уравнение
к²- 3к' + 2 =0 решаем: к1=2 к2=1.
Фундаментальная система решений: y1=e^(2x) y2=e^(x)
общее решение
у=С1·y1+С2·y2=С1·e^(2x) + С2·e^(x)
ответ: у=С1·e^(2x) + С2·e^(x)
4) y"= cos (x/2)
y"=d(dy/dx)/dx ⇔d(dy/dx)/dx= cos x/2 ⇔∫d(dy/dx)= ∫(cos (x/2 ))dx⇔
dy/dx=2sin(x/2 )+C1 ⇔ ∫dy=∫(2sin(x/2 )+C1) dx ⇔
y= - 4cos (x/2 )+C1x+C2
ответ:
y= - 4cos (x/2 )+C1x+C2