5. а) Определи продолжительность. 1 части суток 4. 1 части суток 8 1 В 1 части суток 6 части суток б) Заполни пропуски. 8 - это от ... 4 - это OT го до 3 от .. 1 от от.. 3 - это 2 - это
Обозначим долю сливок в масле как а долю масла в сливках, как
Нам дано кг молока. Посчитаем, какую массу масла можно из него получить.
Для начала, чтобы получить массу сливок , которую можно собрать с молока, воспользуемся простым правилом: умножаем на число процентов в доле и делим на сто процентов:
кг.
**(A)** Заметим при этом, что при нахождении мы просто умножили на
Теперь, чтобы получить массу масла , которую можно выделить из собранных сливок, воспользуемся теми же правилами:
кг масла
**(B)** Заметим при этом, что при нахождении мы просто умножили на т.е., учитывая расчёт **(A)** мы умножили на а затем на и в самом деле:
кг масла
Значит масса конечного масла и исходного молока всегда связаны одним и тем же соотношением:
;
**(С)** ;
Теперь ответим на последний вопрос, в котором предлагаются другие обстоятельства, в которых нам дана масса конечного масла, а найти нужно массу исходного молока:
кг ;
отсюда: кг кг кг ;
кг кг ;
Или можно сразу же выразить массу молока из уравнения **(С)** :
Правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно: 1. Привести дроби к общему знаменателю; 2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
Нам дано кг молока. Посчитаем, какую массу масла можно из него получить.
Для начала, чтобы получить массу сливок , которую можно собрать с молока, воспользуемся простым правилом: умножаем на число процентов в доле и делим на сто процентов:
кг.
**(A)** Заметим при этом, что при нахождении мы просто умножили на
Теперь, чтобы получить массу масла , которую можно выделить из собранных сливок, воспользуемся теми же правилами:
кг масла
**(B)** Заметим при этом, что при нахождении мы просто умножили на т.е., учитывая расчёт **(A)** мы умножили на а затем на и в самом деле:
кг масла
Значит масса конечного масла и исходного молока всегда связаны одним и тем же соотношением:
;
**(С)** ;
Теперь ответим на последний вопрос, в котором предлагаются другие обстоятельства, в которых нам дана масса конечного масла, а найти нужно массу исходного молока:
кг ;
отсюда: кг кг кг ;
кг кг ;
Или можно сразу же выразить массу молока из уравнения **(С)** :
и опять же найдем, что:
кг кг кг ;
О т в е т :
1) Из кг молока можно получить кг масла.
2) Для получения кг масла нужно кг молока.
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно:
1. Привести дроби к общему знаменателю;
2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)