5-А
Тема
"Арифметичні діі з десятковими дробами. Розв"язування задач"
Задача 1
Земля обертаєть довкола Сонця по еліптичній орбіті. Найменша відстань від Землі до Сонця 147,1 млн км. А найбільша відстань між ними 152,1 млн км. На скільки найбільша відстань від Землі до Сонця більша від найменшоі відстані між цими двома небесними тілами
если следовать моей логике,то получается у нас так..
100,300,700...
разберём изначально данные числа,и действующую здесь закономерность последовательности
было 100,стало 300,следовательно
число изменилось на +200,то есть 100+(200)= 300
дальше значит у нас 300,700
число изменилось на +400,то есть 300+(400)=700
думаю закономерность последовательности здесь ясна..
прибавляемая к изначальному числу сумма,с каждым разом увеличивается на 200,то есть
сначала к 100 прибавляем 200, получается 300,потом к триста прибавляем уже не те 200,а уже 400,ТК каждый раз,к получившемуся числу прибавляем на 200 больше..
ну и получаем..
100+200={300}
300+400={700}
700+600={1300}
1300+800={2100}
2100+1000=получается наше конечное число "3100"
вот и все решение данной закономерности..
пропущенные числа :1300,2100
ответ:0,94.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.