В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
5656grey6767
5656grey6767
15.05.2022 20:34 •  Математика

5 Давних подруги встретились и рассказывают: —Вот у меня тройня недавно родилась! С каждого каждый месяц по 30 тысяч платят!
—А вот у меня нету детей! Но я зарабатываю по 60 тысяч каждые 25 дней!
—Ох, девченки, а вообще замуж за дипутата вышла, он мне по 20 тысяч в неделю на шоппинг даёт!
—А у меня хоть и не муж дипутат, да и нет детей, но за тоя зарабатываю журналистом 39 тысяч в месяц.
Вопрос:Кто больше получет за 1 год?

Показать ответ
Ответ:
kirill163aye
kirill163aye
03.10.2022 12:16

Пошаговое объяснение:

Мы имеем прямоугольный треугольник АВС, с прямым углом С, где АС, ВС - катеты, АВ - гипотенуза. Также мы имеем описанную окружность, радиус которой мы можем найти, как половину гипотенузы, для начала найдем гипотенузу по теореме Пифагора:

AB^2 = AC^2 + BC^2;

AB^2 = 6^2 + 8^2;

AB^2 = 36 + 64;

AB^2 = 100;

AB = 10 см.

Так как мы нашли длину гипотенузы, мы можем сразу найти радиус описанной окружности, как:

R = AB / 2;

R = 10 / 2;

R = 5 см.

ответ: радиус описанной окружности равен 5 см.

0,0(0 оценок)
Ответ:
asalkhuseynova
asalkhuseynova
26.05.2022 06:07
Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения! Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера! Рассмотрим систему уравнений На первом шаге вычислим определитель  , его называют главным определителем системы. Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не нужно использовать Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
 и На практике вышеуказанные определители также могут обозначаться латинской буквой .Корни уравнения находим по формулам:
, Пример 7Решить систему линейных уравнений 
Решение: Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи. Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.Что делать? В подобных случаях и приходят на формулы Крамера., значит, система имеет единственное решение.;
;
ответ: , Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение». В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения   в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.Пример 8

Решить систему по формулам Крамера.  ответ представить в обыкновенных неправильных дробях. Сделать проверку.
Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:
Находим главный определитель системы:
Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не нужно использовать.Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, , И, наконец, ответ рассчитывается по формулам:
Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов  последовательно «прогуливается» слева направо по столбцам главного определителя.Пример 9

Решить систему по формулам Крамера.  
Решение: Решим систему по формулам Крамера.

, значит, система имеет единственное решение.ответ: .Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.Бывает так, что в результате вычислений 
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота