5. Рания закрашивает в зеленый некоторое количество клеток в квадрате размера 2х2, остальные клетки остаются не закрашенными. Если существуют квадраты которые можно повернуть так, что они совпадут, Рания считает такие раскраски одинаковыми. Сколько существует различных раскрасок?
7
Пошаговое объяснение:
Вспомним признак делимости на 9: число делится на 9 тогда и только тогда, когда его сумма цифр делится на 9.
Этот признак работает и для равноостаточности при делении на 9. То есть, число и его сумма цифр имеют одинаковый остаток при делении на 9.
Пусть - изначальное число и - сумма цифр числа . Пусть остаток при делении на 9 у числа - r, тогда и у числа остаток при делении на 9 тоже r. Но тогда и у чисел остаток при делении на 9 равен r. Но так как r - чисто от 0 до 9, то это и есть наша оставшаяся в конце цифра.
Тогда нам нужно всего лишь найти остаток при делении на 9 у числа . А он такой же, как у числа , и такой же, как у числа , и такой же, как у числа , а он такой же, как у числа , а это равно 7.