Пусть P(n) - это произведение цифр в числе n. Пусть под n подразумевается некоторый массив из чисел от 2017 до 20179999. То есть n пробегает эти значения. Наша цель в таком случае найти значение выражения P(n+11)-P(n); Все, чем будет отличаться P(n+11) от P(n) - последними значениями: 20179989+11=20180000, 20179990+11=20180001,...,20179999+11=20180010 - все это - новые числа. (1) Теперь сопоставим все одинаковые числа из массива P(n) массиву P(n+11). Их разница будет равна 0. Оставшиеся новые значения перечисленные сверху сопоставим числам 2017+11, 2018+11,...,2029+11. Но числа в (1) содержат 0 в записи, как и эти числа. То есть произведение цифр у обеих групп будет равна 0. Следовательно, сумма всех чисел в тетради мистера Фокса будет равна 0.
В скобки взяты одинаковые части двух последовательностей. При вычитании произведений цифр каждого числа первой последовательности из произведений цифр этого же числа второй последовательности, мы получим нуль. Осталось перемножить цифры оставшихся чисел из первой и второй последовательностей и найти их разность. Произведение цифр каждого числа первой последовательности 2017, 2018, ..., 2026, 2027 равно нулю. Также равно нулю произведение цифр всех оставшихся чисел второй последовательности - 20180000, 20180001, ... , 20180010. Произведения цифр чисел равны нулю, т.к. в каждое число входит цифра 0. Итак, сумма всех чисел, выписанных в тетрадь Фоксом, равна нулю.
Теперь сопоставим все одинаковые числа из массива P(n) массиву P(n+11). Их разница будет равна 0. Оставшиеся новые значения перечисленные сверху сопоставим числам 2017+11, 2018+11,...,2029+11.
Но числа в (1) содержат 0 в записи, как и эти числа. То есть произведение цифр у обеих групп будет равна 0. Следовательно, сумма всех чисел в тетради мистера Фокса будет равна 0.
2017, 2018, ... 2027, (2028, ... , 20179999)
(2028, ... , 20179999), 20180000, ... , 2018010
В скобки взяты одинаковые части двух последовательностей. При вычитании произведений цифр каждого числа первой последовательности из произведений цифр этого же числа второй последовательности, мы получим нуль.
Осталось перемножить цифры оставшихся чисел из первой и второй последовательностей и найти их разность.
Произведение цифр каждого числа первой последовательности 2017, 2018, ..., 2026, 2027 равно нулю. Также равно нулю произведение цифр всех оставшихся чисел второй последовательности - 20180000, 20180001, ... , 20180010. Произведения цифр чисел равны нулю, т.к. в каждое число входит цифра 0.
Итак, сумма всех чисел, выписанных в тетрадь Фоксом, равна нулю.