Составить уравнение нормали и касательной к кривой y = x -x³ в точке с абсциссой x₀ = -1.
Уравнение касательной к кривой y = x -x³ в точке с абсциссой x₀ = -1
имеет вид y - y₀ =k₀(x- x₀),где k₀ угловой коэффициент касательной к кривой в точке x₀ .
При x = x₀ = -1 ⇒y₀ = (-1) -(-1)³ =0 . Значит y - 0 =k₀(x- -(-1)) ⇔
y =k₀(x+1).
Определяем угловой коэффициент касательной в точке x₀
y ' =(x-xx³) ' = x ' - (x³) ' =1 -3x² .
k₀ = y '(x₀) = y '(-1) = (1 -3*(-1)²) = -2 .
Окончательно уравнение касательной к кривой в точке x₀ будет :
y = -2(x+1) ⇔ y = -2(x+1) .
Уравнение нормали к кривой в точке x₀ имеет вид y - y₀ =k₁(x- x₀) ,где угловой коэффициент нормали к₁ = -1/к₀=1/2 , поэтому уравнение нормали будет y =1/2(x-1) ⇔y =0,5x - 0,5.
Составить уравнение нормали и касательной к кривой y = x -x³ в точке с абсциссой x₀ = -1.
Уравнение касательной к кривой y = x -x³ в точке с абсциссой x₀ = -1
имеет вид y - y₀ =k₀(x- x₀),где k₀ угловой коэффициент касательной к кривой в точке x₀ .
При x = x₀ = -1 ⇒y₀ = (-1) -(-1)³ =0 . Значит y - 0 =k₀(x- -(-1)) ⇔
y =k₀(x+1).
Определяем угловой коэффициент касательной в точке x₀
y ' =(x-xx³) ' = x ' - (x³) ' =1 -3x² .
k₀ = y '(x₀) = y '(-1) = (1 -3*(-1)²) = -2 .
Окончательно уравнение касательной к кривой в точке x₀ будет :
y = -2(x+1) ⇔ y = -2(x+1) .
Уравнение нормали к кривой в точке x₀ имеет вид y - y₀ =k₁(x- x₀) ,где угловой коэффициент нормали к₁ = -1/к₀=1/2 , поэтому уравнение нормали будет y =1/2(x-1) ⇔y =0,5x - 0,5.
y = x^3 - 6x^2 + 9x - 5; a = -2; b = 3
А) Экстремумы. y' = 3x^2 - 12x + 9 = 3(x - 1)(x - 3) = 0
x1 = 1; y(1) = 1 - 6 + 9 - 5 = -1 - максимум
x2 = 3; y(3) = 27 - 6*9 + 9*3 - 5 = -5 - минимум
Промежутки монотонности:
(-oo; 1) U (3; +oo) - возрастает; (1; 3) - убывает.
Б) Точки перегиба
y'' = 6x - 12 = 6(x - 2) = 0
x = 2; y(2) = 8 - 6*4 + 9*2 - 5 = -3
Промежутки:
(-oo; 2) - выпуклый вверх; (2; +oo) - выпуклый вниз (вогнутый).
В) Значения на концах отрезка:
y(a) = y(-2) = -8 - 6*4 - 9*2 - 5 = -8 - 24 - 18 - 5 = -55
y(b) = y(3) = 27 - 6*9 + 9*3 - 5 = -5
Наименьшее значение: y(-2) = -55, наибольшее значение: y(1) = -1
Заметьте, что, хотя x = 3 - локальный минимум, но наименьшее значение на отрезке находится в точке x = -2.