1) Область определения - это значения х, при которых данная функция существует. Разрывов нет. Левая ветвь уходит вниз до бесконечности. Правая ветвь уходит вверх до бесконечности. ответ: х (-∞, + ∞).
2) Аналогично: при этом игрек принимает значения от -∞ до + ∞. ответ: у (-∞, + ∞).
3) Нули функции - это точки пересечения графика функции с осью х. Таких точек 3, они выделены на графике красным цветом:
х1 = -6, х2 = - 1, х3 = 5.
Нули функции разбивают график на промежутки знакопостоянства.
4) На промежутке от -∞ до то х = -6 функция отрицательна (график находится под осью х) ;
на промежутке от х = -6 до х = - 1 функция положительна (график находится над осью х);
на промежутке от х = - 1 до х = 5 функция отрицательна;
Пусть х м - длина одной части, тогда (х + 3/10) м - длина другой части. Длина всей ленты (2 19/30) м. Уравнение:
х + х + 3/10 = 2 19/30
2х = 2 19/30 - 3/10
2х = 2 19/30 - 9/30
2х = 2 10/30
2х = 2 1/3
2х = 7/3
х = 7/3 : 2
х = 7/3 * 1/2
х = 7/6
х = 1 целая 1/6 (м) - длина одной части
1 1/6 + 3/10 = 1 5/30 + 9/30 = 1 14/30 = 1 целая 7/15 (м) - длина другой части
ответ: 1 целая 1/6 м и 1 целая 7/15 м.
Проверка: 1 1/6 + 1 7/15 = 1 5/30 + 1 14/30 = 2 целых 19/30 (м) - длина всей ленты.
Пошаговое объяснение:
См. решение.
Пошаговое объяснение:
1) Область определения - это значения х, при которых данная функция существует. Разрывов нет. Левая ветвь уходит вниз до бесконечности. Правая ветвь уходит вверх до бесконечности. ответ: х (-∞, + ∞).
2) Аналогично: при этом игрек принимает значения от -∞ до + ∞. ответ: у (-∞, + ∞).
3) Нули функции - это точки пересечения графика функции с осью х. Таких точек 3, они выделены на графике красным цветом:
х1 = -6, х2 = - 1, х3 = 5.
Нули функции разбивают график на промежутки знакопостоянства.
4) На промежутке от -∞ до то х = -6 функция отрицательна (график находится под осью х) ;
на промежутке от х = -6 до х = - 1 функция положительна (график находится над осью х);
на промежутке от х = - 1 до х = 5 функция отрицательна;
на участке от х = 5 до + ∞ функция положительна.