Прежде всего, случайное совпадение (письмо Чмыхова и приезд Хлестакова).;городские сплетники приводят «неопровержимые» доказательства: «Он! и денег не платит, и не едет... Такой наблюдательный: все обсмотрел... он и в тарелки к нам заглянул...» Это для городничего уже серьезный довод (очевидно, так вели себя те ревизоры, с которыми приходилось иметь дело городничему). ,поначалу молодость Хлестакова вызывает у городничего надежду: «Молодого скорее пронюхаешь. Беда, если старый черт, а молодой весь наверху». Затем, после неумеренной похвальбы Хлестакова, чутье не позволяет городничему до конца поверить всем этим россказням: «Ну что, если хоть одна половина из того, что он говорил, правда? (Задумывается.) Да как же и не быть правде? Подгулявши, человек все несет наружу: что на сердце, то и на языке. Конечно, прилгнул немного; да ведь не прилгнувши не говорится никакая речь». Но страх не дает ему сделать верный вывод из своих наблюдений. Тут в полной мере оправдывается русская пословица: «У страха глаза велики».
Главная же причина того, что городничий поверил в значительность Хлестакова, — это его собственная нечистая совесть. Ведь истинный, а не мнимый ревизор обнаружил бы в городе столько злоупотреблений и прямых преступлений власти, что возникающий в сознании городничего призрак Сибири как наказания за его грехи, кажется ему вполне заслуженным. «В эти две недели высечена унтер-офицерская жена! Арестантам не выдавали провизии! На улицах кабак, нечистота!» — сокрушается он, когда узнаёт, что Хлестаков уже так долго находится в городе. А еще, из жалобы слесарши Февроньи Пошлепкиной, мы узнаём, что городничий, нарушив закон, ее мужу «приказал забрить лоб в солдаты», получив взятку от тех, кто должен был идти в рекруты по очередности.
На основании определения функции каждому значению аргумента х из области определения R ( все действительные числа ) соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 , а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой аргументу х несколько значений, вычисли соответствующие значения функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и соедини их плавной непрерывной кривой. Эта кривая, называющаяся параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные левую и правую части (ветви параболы), в точке с координатами (0; 0) (вершине параболы) значение функции x 2 — наименьшее. Наибольшего значения функция не имеет. Вершина параболы — это точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает, а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола, но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина находится в точке с координатами (0; 3) .
Главная же причина того, что городничий поверил в значительность Хлестакова, — это его собственная нечистая совесть. Ведь истинный, а не мнимый ревизор обнаружил бы в городе столько злоупотреблений и прямых преступлений власти, что возникающий в сознании городничего призрак Сибири как наказания за его грехи, кажется ему вполне заслуженным. «В эти две недели высечена унтер-офицерская жена! Арестантам не выдавали провизии! На улицах кабак, нечистота!» — сокрушается он, когда узнаёт, что Хлестаков уже так долго находится в городе. А еще, из жалобы слесарши Февроньи Пошлепкиной, мы узнаём, что городничий, нарушив закон, ее мужу «приказал забрить лоб в солдаты», получив взятку от тех, кто должен был идти в рекруты по очередности.
из области определения R ( все действительные числа )
соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 ,
а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой
аргументу х несколько значений, вычисли соответствующие значения
функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и
соедини их плавной непрерывной кривой. Эта кривая, называющаяся
параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные
левую и правую части (ветви параболы), в точке с координатами (0; 0)
(вершине параболы) значение функции x 2 — наименьшее.
Наибольшего значения функция не имеет. Вершина параболы — это
точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает,
а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола,
но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина
находится в точке с координатами (0; 3) .