Лупа — это особое увеличительное стекло. Во многих случаях ее применение весьма полезно, особенно для начинающих. С лупы вы можете проверить камень на наличие сколов или царапин, или же более тщательно рассмотреть некоторые типы явных включений. Но, все равно, помните, что несмотря на использование лупы, вам не хватит ни знаний, ни навыков для того, чтобы разглядеть и понять многочисленные знаковые признаки, которые очевидны для опытного ювелира или геммолога. Никакие книги не дадут вам этих знаний и навыков. Не питайте иллюзий, не пытайтесь выдать невежественность за действительное знание. Иначе настоящий ювелир просто не станет с вами разговаривать, но зато вы очень легко сможете стать жертвой недобросовестного продавца.
Решение: решим линейное неоднородное уравнение второго порядка
y′′+2y′+2y=2x2+8x+6при заданных начальных условиях y(0)=1,y′(0)=4 Алгоритм решения линейного неоднородного дифференциального уравнение второго порядка
1. Решаем однородное уравнение y′′+2y′+2y=0 Решение будем искать в виде y=eλx, тогда y'=λeλx;y''=λ2eλx. Подставляем функцию и ее производные в дифференциальное уравнение
λ2eλx+2λeλx+2eλx=0=>сокращаем на eλx, получаем характеристическое уравнение (это уравнение в следующий раз составим сразу без предыдущих пояснений) λ2+2λ+2=0=> найдем корни характеристического уравнения λ1,2=−2±4−8−−−−√2=>λ1=−1−i;λ2=−1+i Получили комплексно сопряженные корни, им соответствуют два решения y1(x)=e−xcos(x);y2(x)=e−xsin(x) Общее решение однородного уравнения будет линейная комбинация yодн=C1e−xcos(x)+C2e−xsin(x)
2. Решаем неоднородное уравнение y′′+2y′+2y=2x2+8x+6 Найдем частное решение неоднородного дифференциального уравнения, ищем методом вариации произвольной переменной постоянной C1=C1(x);C2=C2(x) в виде yчаст(x)=C1(x)e−xcos(x)+C2(x)e−xsin(x)(1).
Для нахождения функций C1(x);C2(x), подставим результаты в систему с учетом y′1(x)=(e−xcos(x))′=−e−x(cos(x)+sin(x)) y′2(x)=(e−xsin(x))′=e−x(cos(x)−sin(x))
⎧⎩⎨⎪⎪C'1(x)y1(x)+C'2(x)y2(x)=0C'1(x)y'1(x)+C'2(x)y'2(x)=b(x)a0(x)получаем {C'1(x)e−xcos(x)+C'2(x)e−xsin(x)=0C'1(x)(−e−x(cos(x)+sin(x)))+C'2(x)(e−x(cos(x)−sin(x)))=2x2+8x+6=> {C'1(x)cos(x)+C'2(x)sin(x)=0−C'1(x)(cos(x)+sin(x))+C'2(x)(cos(x)−sin(x))=(2x2+8x+6)ex решаем систему уравнений методом Крамера и находим интегралы. C1(x)=∫∣∣∣0(2x2+8x+6)exsin(x)cos(x)−sin(x)∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx= =∫−sin(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫−sin(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==−∫sin(x)(2x2+8x+6)exdx==−ex((x2+4x+2)sin(x)−x(x+2)cos(x)) C2(x)=∫∣∣∣cos(x) cos(x)+sin(x)0 (2x2+8x+6)ex ∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx= =∫cos(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫cos(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==∫cos(x)(2x2+8x+6)exdx==ex((x2+4x+2)cos(x)+x(x+2)sin(x))
Подставляем результат в (1) и получаем частное неоднородное решение дифференциального уравнения
3. Получаем общее решение неоднородного линейного дифференциального уравнения вида yоб=yодн+yчаст подставляем результаты из п.1,п.2
yоб= C1e−xcos(x)+C2e−xsin(x)+ x2+2x
4. Решаем задачу Коши при начальных условиях y(0)=1,y′(0)=4 Находим значения констант при заданных начальных условиях Коши Находим значение функции при условии y(0)=1
yоб(0)= C1e−xcos(x)+C2e−xsin(x)+ x2+2x=1=> C1 =1 Находим производную y′(x) y′об= C1e−xcos(x)+C2e−xsin(x)+ x2+2x==−C1e−xcos(x)−C1e−xsin(x)−C2e−xsin(x)+C2e−xcos(x)+2x+2 при условии y′(0)=4 y′об(0) =−C1+C2+2=4 Составляем систему уравнений и решаем ее{C1=1−C1+C2=2=> {C1=1C2=3 Подставляем результат в п.3, получаем общее решение дифференциального уравнения при заданных начальных условиях Коши yоб=e−xcos(x)+3e−xsin(x)+ x2+2x ответ: решение линейного неоднородного дифференциального уравнения второго порядка, удовлетворяющее начальному условию Каши yоб=e−xcos(x)+3e−xsin(x)+ x2+2x
Решение: решим линейное неоднородное уравнение второго порядка
y′′+2y′+2y=2x2+8x+6при заданных начальных условиях y(0)=1,y′(0)=4Алгоритм решения линейного неоднородного дифференциального уравнение второго порядка
1. Решаем однородное уравнение y′′+2y′+2y=0
λ2eλx+2λeλx+2eλx=0=>сокращаем на eλx, получаем характеристическое уравнение (это уравнение в следующий раз составим сразу без предыдущих пояснений)Решение будем искать в виде y=eλx, тогда y'=λeλx;y''=λ2eλx.
Подставляем функцию и ее производные в дифференциальное уравнение
λ2+2λ+2=0=> найдем корни характеристического уравнения λ1,2=−2±4−8−−−−√2=>λ1=−1−i;λ2=−1+i
Получили комплексно сопряженные корни, им соответствуют два решения y1(x)=e−xcos(x);y2(x)=e−xsin(x)
Общее решение однородного уравнения будет линейная комбинация yодн=C1e−xcos(x)+C2e−xsin(x)
2. Решаем неоднородное уравнение y′′+2y′+2y=2x2+8x+6
Найдем частное решение неоднородного дифференциального уравнения, ищем методом вариации произвольной переменной постоянной C1=C1(x);C2=C2(x) в виде yчаст(x)=C1(x)e−xcos(x)+C2(x)e−xsin(x)(1).
Для нахождения функций C1(x);C2(x), подставим результаты в систему с учетом
⎧⎩⎨⎪⎪C'1(x)y1(x)+C'2(x)y2(x)=0C'1(x)y'1(x)+C'2(x)y'2(x)=b(x)a0(x)получаемy′1(x)=(e−xcos(x))′=−e−x(cos(x)+sin(x))
y′2(x)=(e−xsin(x))′=e−x(cos(x)−sin(x))
{C'1(x)e−xcos(x)+C'2(x)e−xsin(x)=0C'1(x)(−e−x(cos(x)+sin(x)))+C'2(x)(e−x(cos(x)−sin(x)))=2x2+8x+6=>
{C'1(x)cos(x)+C'2(x)sin(x)=0−C'1(x)(cos(x)+sin(x))+C'2(x)(cos(x)−sin(x))=(2x2+8x+6)ex
решаем систему уравнений методом Крамера и находим интегралы.
C1(x)=∫∣∣∣0(2x2+8x+6)exsin(x)cos(x)−sin(x)∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx=
=∫−sin(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫−sin(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==−∫sin(x)(2x2+8x+6)exdx==−ex((x2+4x+2)sin(x)−x(x+2)cos(x))
C2(x)=∫∣∣∣cos(x) cos(x)+sin(x)0 (2x2+8x+6)ex ∣∣∣∣∣∣cos(x)−(cos(x)+sin(x))sin(x)cos(x)−sin(x)∣∣∣dx=
=∫cos(x)(2x2+8x+6)excos(x)(cos(x)−sin(x))+sin(x)(cos(x)+sin(x))dx==∫cos(x)(2x2+8x+6)excos2(x)−cos(x)sin(x)+sin(x)cos(x)+sin2(x)dx==∫cos(x)(2x2+8x+6)exdx==ex((x2+4x+2)cos(x)+x(x+2)sin(x))
Подставляем результат в (1) и получаем частное неоднородное решение дифференциального уравнения
yчаст= −ex((x2+4x+2)sin(x)−x(x+2)cos(x))∗e−xcos(x)++ex((x2+4x+2)cos(x)+x(x+2)sin(x))∗e−xsin(x)==x(x+2)cos2(x)+x(x+2)sin2(x) = x2+2x
3. Получаем общее решение неоднородного линейного дифференциального уравнения вида yоб=yодн+yчаст
подставляем результаты из п.1,п.2
yоб= C1e−xcos(x)+C2e−xsin(x)+ x2+2x
4. Решаем задачу Коши при начальных условиях y(0)=1,y′(0)=4
yоб(0)= C1e−xcos(x)+C2e−xsin(x)+ x2+2x=1=> C1 =1Находим значения констант при заданных начальных условиях Коши
Находим значение функции при условии y(0)=1
Находим производную y′(x)
y′об= C1e−xcos(x)+C2e−xsin(x)+ x2+2x==−C1e−xcos(x)−C1e−xsin(x)−C2e−xsin(x)+C2e−xcos(x)+2x+2
при условии y′(0)=4
y′об(0) =−C1+C2+2=4
Составляем систему уравнений и решаем ее{C1=1−C1+C2=2=> {C1=1C2=3
Подставляем результат в п.3, получаем общее решение дифференциального уравнения при заданных начальных условиях Коши
yоб=e−xcos(x)+3e−xsin(x)+ x2+2x
ответ: решение линейного неоднородного дифференциального уравнения второго порядка, удовлетворяющее начальному условию Каши yоб=e−xcos(x)+3e−xsin(x)+ x2+2x