Пусть х - стоимость одной тетради, а у - стоимость одного альбома, где x>0,y>0, т.к. 5 тетрадей и 4 альбома стоят 22 грн, а 12 тетрадей и 3 альбома - 33 грн, то получаем систему уравнений:
Значит, одна тетрадь стоит 2 гривны
3 грн стоит один альбом
ответ: 2 грн и 3 грн.
х-цена тетради
у-цена альбома
5х+4у=22грн.
12х+3у=33грн.
5х=22-4у
2.4(22-4у)+4у=33
52.8-9.6у+4у=33
-6.6у=-19.8
у=3 грн. стоит альбом
(22-4*3):5=(22-12):5=10:5=2 грн. стоит тетрадь
Пусть х - стоимость одной тетради, а у - стоимость одного альбома, где x>0,y>0, т.к. 5 тетрадей и 4 альбома стоят 22 грн, а 12 тетрадей и 3 альбома - 33 грн, то получаем систему уравнений:
Значит, одна тетрадь стоит 2 гривны
3 грн стоит один альбом
ответ: 2 грн и 3 грн.
х-цена тетради
у-цена альбома
5х+4у=22грн.
12х+3у=33грн.
5х=22-4у
2.4(22-4у)+4у=33
52.8-9.6у+4у=33
-6.6у=-19.8
у=3 грн. стоит альбом
(22-4*3):5=(22-12):5=10:5=2 грн. стоит тетрадь