Правило. Чтобы разложить число на простые множители, надо: — записать его слева от вертикальной черты; — справа от черты записать первый делитель числа — самое маленькое число из таблицы простых чисел, на которое данное число делится без остатка; — в следующей строке слева под числом записать делимое первого этапа, которое является частным от деления данного числа на записанный справа на одной строке с ним делитель; — справа найти (как и первый делитель) наименьшее простое число, на которое делимое первого этапа делится без остатка, это число будет вторым делителем числа; — слева записать делимое второго этапа, которое есть частное от деления предыдущей строки делимого на ее же делитель; — для делимого второго этапа также найти делитель из наименьшего числа простых чисел, записать его на той же строке справа н т. д., пока в делимом последнего этапа не будет стоять 1; — делители, стоящие справа от черты, записать множителями данного числа.
Пошаговое объяснение:
27). перенесем все влево и вынесем за скобки (4+х^2)
x^2(4+х^2)-(4+х^2)>0 (4+х^2)(x^2-1)>0 ( 4+х^2)(x-1)(x+1)>0
решаем методом интервалов с учетом, что (4+х^2)>0 при любом значении х
отмечаем на прямой + - +
-1 1
знак неравенства >,значит в ответе х∈(-∞;-1)∪(1;+∞)
28). (х^2+10)(x^2-9)<0 (х^2+10)(x-3)(x+3)<0 (х^2+10)>0 при любом значении х
отмечаем на прямой + - +
-3 3
знак неравенства <,значит в ответе х∈(-3;3)
— записать его слева от вертикальной черты;
— справа от черты записать первый делитель числа — самое маленькое число из таблицы простых чисел, на которое данное число делится без остатка;
— в следующей строке слева под числом записать делимое первого этапа, которое является частным от деления данного числа на записанный справа на одной строке с ним делитель;
— справа найти (как и первый делитель) наименьшее простое число, на которое делимое первого этапа делится без остатка, это число будет вторым делителем числа;
— слева записать делимое второго этапа, которое есть частное от деления предыдущей строки делимого на ее же делитель;
— для делимого второго этапа также найти делитель из наименьшего числа простых чисел, записать его на той же строке справа н т. д., пока в делимом последнего этапа не будет стоять 1;
— делители, стоящие справа от черты, записать множителями данного числа.