В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mironova161
mironova161
09.06.2020 01:56 •  Математика

6.( ) График функции, заданной уравнением у=(с -3)+c-2 пересекает сь абсцисс в точке с координатами (-5; 0). а) Найдите значение с; Б) Запишите функцию в виде у=kx+b; c) Не выполняя построения графика функции, определите, через какую четверть график не проходит.

Показать ответ
Ответ:
apple1345
apple1345
14.02.2023 14:44

5/Задание № 1:

Назовите число, утроенная четверть которого равна половине от 120.

РЕШЕНИЕ: Если утроенная четверть равна (1/2)*120=60, то просто четверть равна 60/3=20, а значит само число 20*4=80.

ОТВЕТ: 80

5/Задание № 2:

Сколько четырёхзначных чисел, которые делятся на 45, две средние цифры которых 88?

РЕШЕНИЕ: Число, делящееся на 45, делится на 5 и делится на 9. Значит, оно должно оканчиваться на 0 или 5, и его сумма цифр должна делиться на 9.

Обозначим первую цифру за х.

Если последняя цифра 0, то сумма цифр равна х+8+8+0=х+16. Учитывая, что (х+16) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=2.

Если последняя цифра 5, то сумма цифр равна х+8+8+5=х+21. Учитывая, что (х+21) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=6.

Итак, всего два числа 2880 и 6885 удовлетворяют условию.

ОТВЕТ: 2 числа

5/Задание № 3:

Сумма двух чисел равна 627. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите разность этих двух чисел.

РЕШЕНИЕ: Пусть первое число 10х. При зачеркивании последнего нуля оно становится в 10 раз меньше, то есть становится равно х. Их сумма по условию:

10х+х=627

11х=627

х=627/11

х=57

Разность чисел 10х-х=9х=9*57=513

ОТВЕТ: 513

5/Задание № 4:

У Вани было 140 рублей монетами достоинством 2, 5 и 10 рублей. Двухрублёвых монет было в 5 раз больше, чем пятирублёвых, а десятирублёвых в 2 раза больше, чем пятирублёвых. Сколько всего монет было у Вани?

РЕШЕНИЕ: Пусть у Вани было х пятирублевых монет, тогда двухрублёвых было 5х, а десятирублёвых было 2х. Всего монет в этом случае было х+5х+2х=8х. Общая сумма денег:

5х+2*5х+10*2х=140

5х+10х+20х=140

35х=140

х=140/35

х=4

Число монет 8х=8*4х=32

ОТВЕТ: 32 монеты

0,0(0 оценок)
Ответ:
varsockaya
varsockaya
14.02.2023 14:44

5/Задание № 1:

Назовите число, утроенная четверть которого равна половине от 120.

РЕШЕНИЕ: Если утроенная четверть равна (1/2)*120=60, то просто четверть равна 60/3=20, а значит само число 20*4=80.

ОТВЕТ: 80

5/Задание № 2:

Сколько четырёхзначных чисел, которые делятся на 45, две средние цифры которых 88?

РЕШЕНИЕ: Число, делящееся на 45, делится на 5 и делится на 9. Значит, оно должно оканчиваться на 0 или 5, и его сумма цифр должна делиться на 9.

Обозначим первую цифру за х.

Если последняя цифра 0, то сумма цифр равна х+8+8+0=х+16. Учитывая, что (х+16) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=2.

Если последняя цифра 5, то сумма цифр равна х+8+8+5=х+21. Учитывая, что (х+21) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=6.

Итак, всего два числа 2880 и 6885 удовлетворяют условию.

ОТВЕТ: 2 числа

5/Задание № 3:

Сумма двух чисел равна 627. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите разность этих двух чисел.

РЕШЕНИЕ: Пусть первое число 10х. При зачеркивании последнего нуля оно становится в 10 раз меньше, то есть становится равно х. Их сумма по условию:

10х+х=627

11х=627

х=627/11

х=57

Разность чисел 10х-х=9х=9*57=513

ОТВЕТ: 513

5/Задание № 4:

У Вани было 140 рублей монетами достоинством 2, 5 и 10 рублей. Двухрублёвых монет было в 5 раз больше, чем пятирублёвых, а десятирублёвых в 2 раза больше, чем пятирублёвых. Сколько всего монет было у Вани?

РЕШЕНИЕ: Пусть у Вани было х пятирублевых монет, тогда двухрублёвых было 5х, а десятирублёвых было 2х. Всего монет в этом случае было х+5х+2х=8х. Общая сумма денег:

5х+2*5х+10*2х=140

5х+10х+20х=140

35х=140

х=140/35

х=4

Число монет 8х=8*4х=32

ОТВЕТ: 32 монеты

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота