6. Установите соответствие между первой и второй частью правила: к каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные буквы под соответствующими цифрами. 1. Если часть целого выражена дробью, то, чтобы найти эту часть
2. Если часть искомого целого выражена дробью, то, чтобы найти это целое А. нужно целое разделить на дробь
Б. Нужно дробь разделить на целое
В. нужно целое умножить на дробь
Г. Нужно числитель умножить на знаменатель и разделить на целое
= 8/3 + 2 + 1/3 + 1 = 9/3 + 3 = 6
2) Int (-2; 4) (x^3/3) dx = -Int (-2, 0) (x^3/3) dx + Int (0, 4) (x^3/3) dx =
= -x^4/12 | (-2; 0) + x^4/12 | (0; 4) = 0 + (-2)^4/12 + 4^4/12 - 0 =
= 16/12 + 256/12 = 4/3 + 64/3 = 68/3
Часть графика от -2 до 0 находится ниже оси Ох, поэтому ее нужно прибавить, а не вычесть.
3) Найдем точки пересечения графиков
x^2 = -3x
x^2 + 3x = x(x + 3) = 0
x1 = -3; x2 = 0
График y = -3x в этой области лежит выше, чем y = x^2
Int (-3; 0) (-3x - x^2) dx = (-3x^2/2 - x^3/3) | (-3; 0) =
= 0 - (-3*(-3)^2/2 - (-3)^3/3) = -(-3*9/2 + 27/3) = 27/2 - 9 = 13,5 - 9 = 4,5
7814+6509=14323
Понятно, что ПЕ и ДР - среди чисел кратных 13, т.е. они могут быть 13, 26, 39, 52, 65, 78, 91. Т.к. сумма 4-значных дало 5-значное, то K=1. Значит 13 и 91 не подходят (ПЕ и ДР не должны содержать 1). Т.к. ПЕ+ДР>100, то возможны только варианты 39+65=104, 39+78=117. 52+65=117, 52+78=130, 65+78=143, 78+26=104. Из них всех подходить могут только те, где 130 и 143, потому что в остальных есть либо O=0, чего быть не может т.к. тогда 0+Г=А, т.е. А=Г, либо О=К=1. Остаются только 52+78=130, 65+78=143. Первый не подходит, т.к. получается 5213+78УГ=130Л0, т.е. Г=7, но оно занято. В результате подходит единственный вариант 65+78=143. Расставить остальные цифры - дело техники.