6. Запишите все подмножества множества: а) T = {2; 10} б) E = {a, x, y}
7. Найдите объединение множеств А и В, если:
а) А = {- 7, - 4, 1, 3, 10,11}, В = {2, 3, 8,10},
б) А = [3; 23], В = [12; 41]
8. Найдите А∩В, если:
а) А = (- 8; 9), В = (1;17)
б) А = [4;23], В = [23;52]
в) А = (- ∞; ∞), В = (7; 38)
9. Найдите разность A \ B, если А = {1, 6, 9, 10}, B = {6, 9}.
10. Определить, является ли предложение высказыванием.
Лондон – столица Франции.
Ученица 11 «Б» класса.
Сергей Чепиков – двукратный олимпийский чемпион.
Пришла весна!
t – 14 = 10
Аристотель – основатель логики.
Ты поступил в ВУЗ?
11. Определить истинность следующих сложных высказываний, составленных из простых высказываний А и С, если:
А – ложь, С – истина.
a)А → С;
b) A∨C;
c) A∧C.
12. Проверьте, верно ли следующее равенство: A∨B=A∧B.
-1050, 0, 102 Є Z
2. Множество двухзначных чисел - конечное множество
Множество чётных чисел - бесконечное множество.
3. а) N подмножество Д, б) А подмножество Д, в) В подмножество N
а) N и R пересечение 1, 2
N и А пересечение - нет
N и В пересечение 1; 2; 3
N и Д пересечение 1; 2; 3
А и В пересечение - нет
А и Д пересечение -0,5; 0; 0,5
В и R пересечение 1; 2
А и В объединение -0,5; 0; 0,5; 1; 2; 3; 4; 5
R и N объединение 0; 0,5; 1; 1,5; 2; 3
R и В объединение 0; 0,5; 1; 1,5; 2; 3; 4; 5
4. Множеством чётных чисел A являются числа кратные 2→а=2*n
Множество чисел В являются числа кратные 3 в=3*n
A и В пересечение а*в=2*3*n
A и В объединение 2*n; 3*n
5. 15-1=14 девочек занимаются музыкой и танцами.
10+9=19 мест на музыке и на танцах занимают девочки.
19-14=5 девочек занимаются и музыкой и танцами.
6. 4!=24
7. 3!=6
а) на 2, когда число заканчивается на 6 или на 8 - 2^2=4 числа
б) на 4, 4/2=2 числа
в) на 3 - сумма цифр 1+6+8=15 делится на 3, все 6 чисел кратны 3.
г) на 6 - все чётные числа - 4 числа.
8. 7!/3!=840
9. С(1 по 4)+С(2 по 4)+С(3 по 4)+С(4 по
10. 3!=6+1=7 (1; 2; 3; 2,3; 1,3; 1,2, и 1,2,3)
-1050, 0, 102 Є Z
2. Множество двухзначных чисел - конечное множество
Множество чётных чисел - бесконечное множество.
3. а) N подмножество Д, б) А подмножество Д, в) В подмножество N
а) N и R пересечение 1, 2
N и А пересечение - нет
N и В пересечение 1; 2; 3
N и Д пересечение 1; 2; 3
А и В пересечение - нет
А и Д пересечение -0,5; 0; 0,5
В и R пересечение 1; 2
А и В объединение -0,5; 0; 0,5; 1; 2; 3; 4; 5
R и N объединение 0; 0,5; 1; 1,5; 2; 3
R и В объединение 0; 0,5; 1; 1,5; 2; 3; 4; 5
4. Множеством чётных чисел A являются числа кратные 2→а=2*n
Множество чисел В являются числа кратные 3 в=3*n
A и В пересечение а*в=2*3*n
A и В объединение 2*n; 3*n
5. 15-1=14 девочек занимаются музыкой и танцами.
10+9=19 мест на музыке и на танцах занимают девочки.
19-14=5 девочек занимаются и музыкой и танцами.
6. 4!=24
7. 3!=6
а) на 2, когда число заканчивается на 6 или на 8 - 2^2=4 числа
б) на 4, 4/2=2 числа
в) на 3 - сумма цифр 1+6+8=15 делится на 3, все 6 чисел кратны 3.
г) на 6 - все чётные числа - 4 числа.
8. 7!/3!=840
9. С(1 по 4)+С(2 по 4)+С(3 по 4)+С(4 по
10. 3!=6+1=7 (1; 2; 3; 2,3; 1,3; 1,2, и 1,2,3)