615. При 616. Масса одного метра рельса равна 32 кг. Сколько понадобится железнодорожных вагонов грузоподъёмностью 60 т, чтобы перевезти все рельсы, необходимые для постройки одноколейной железной дороги дли- ной 180 км с записью вы понили
Приведем это Диофантово уравнение к более удобному виду:
100a+10b+c=70a+7c
30a+10b=6c
15a+5b=3c
разделим обе части на 15
а+b/3=c/5
Следовательно, т.к. 3 и 5 - взаимно простые,
- b должно быть кратно 3
- с должно быть кратно 5
- а равно с/5 - b/3
(заметим, что 0 - кратное любой цифре. НО - а не равно нулю, т.к. в этом случае имеем двузначное число. Следовательно, с тоже не может быть нулем, иначе а обращается в 0)
Итак:
с = 5 - без вариантов;
b= 0; 3; 6 или 9
а - вычислим:
с=5 b=0 => a= 5/5 - 0/3 = 1
c=5 b=3 => a= 5/5 - 3/3 = 0 - не подходит, потому что ане может быть равным нулю ( получаем двузначное число)
При b=6, b=9 => a= -1 и а= -2, что невозможно по условиям задачи.
Отсюда - один вариант ответа:
a= 1 b=0 с=5
То есть, ОТВЕТ - 105. Других чисел нет.
(проверка: 105/7 = 15 - что и требовалось в условии)
Представим трехзначное число в виде
100а+ 10b + с.
При вычеркивании средней цифры имеем следующее:
10а + с
Причем по условию:
100а+10b+c=7*(10a+c)
Приведем это Диофантово уравнение к более удобному виду:
100a+10b+c=70a+7c
30a+10b=6c
15a+5b=3c
разделим обе части на 15
а+b/3=c/5
Следовательно, т.к. 3 и 5 - взаимно простые,
- b должно быть кратно 3
- с должно быть кратно 5
- а равно с/5 - b/3
(заметим, что 0 - кратное любой цифре. НО - а не равно нулю, т.к. в этом случае имеем двузначное число. Следовательно, с тоже не может быть нулем, иначе а обращается в 0)
Итак:
с = 5 - без вариантов;
b= 0; 3; 6 или 9
а - вычислим:
с=5 b=0 => a= 5/5 - 0/3 = 1
c=5 b=3 => a= 5/5 - 3/3 = 0 - не подходит, потому что ане может быть равным нулю ( получаем двузначное число)
При b=6, b=9 => a= -1 и а= -2, что невозможно по условиям задачи.
Отсюда - один вариант ответа:
a= 1 b=0 с=5
То есть, ОТВЕТ - 105. Других чисел нет.
(проверка: 105/7 = 15 - что и требовалось в условии)
1) 2,3 * 11 + 1,8 * 15 = 52,3
2,3 * 11 = 25,3
1,8 * 15 = 27
25,3 + 27 = 52,3
2) 6,25 * 16 + 18,9 * 21 = 496,9
16 * 6,25 = 100
21 * 18,9 = 396,9
396,9 + 100 = 496,9
3) 9,03 * 25 - 10,7 * 15 = 65,25
9,03 * 25 = 225,75
10,7 * 15 = 160,5
225,75 - 160,5 = 65,25
4) 1,5 * 10 + 2,08 * 45 = 108,6
1,5 * 10 = 15
2,08 * 45 = 93,6
93,6 + 15 = 108,6
5) 12,08 * 100 - 75,6 * 11 = 376,4
12,08 * 100 = 1 208
75,6 * 11 = 831,6
1 208 - 831,6 = 376,4
6) 46,131 * 10 + 91,05 * 100 = 9 566,31
46,131 * 10 = 461,31
91,05 * 100 = 9 105
9 105 + 461,31 = 9 566,31