Задуманное двузначное число на 73 больше произведения своих чисел. Какое это число?
ответ: 81
Пошаговое объяснение:
Двузначные числа, большие чем 73, - это числа от 74 до 99. Значит, разность между 73 и возможными вариантами (то есть числами от 74 до 99) находится в интервале 1 до 26. Разность эта и есть произведение двух цифр в нашем числе.
Итак, произведение этих двух цифр есть число, не большее 26. По таблице умножения (в сегменте от 7х4 до 9х9) легко определить , что нужный нам результат (не более 26) приносят произведения 8х1, 8х2, 8х3, 9х1 и 9х2. Простым вычислением находим, что нужное нам число - 81.
Не факт ещё, что данное уравнение явлдяется квадратным, поскольку параметр содержится как раз при квадрате.1)a = 0 Тогда уравнение не является квадратным, получаем уравнение вида -5x -5 = 0Но линейное уравнение имеет лишь один корень. Значит, данное значение параметра нам не подходит.2)Рассмотрю случай, когда a ≠ 0. Тогда уравнение является квадратным. ax² - (a² + 5)x + 3a-5 = 0 Теперь вспомним, а когда квадратное уравнение имеет 2 различных корня? Тогда, когда его дискриминант больше 0. Так что, первым делом выделим дискриминант этого уравнения.a = a ; b = -(a²+5);c = 3a - 5; D = b² - 4ac = (-(a²+5))² - 4a(3a - 5) = a^4 + 10a² + 25 - 12a² + 20a = a^4 - 2a² + 20a + 25D > 0, как мы уже сказали. теперь решим неравенство.a^4 - 2a² + 20a + 25 > 0
Задуманное двузначное число на 73 больше произведения своих чисел. Какое это число?
ответ: 81
Пошаговое объяснение:
Двузначные числа, большие чем 73, - это числа от 74 до 99. Значит, разность между 73 и возможными вариантами (то есть числами от 74 до 99) находится в интервале 1 до 26. Разность эта и есть произведение двух цифр в нашем числе.
Итак, произведение этих двух цифр есть число, не большее 26. По таблице умножения (в сегменте от 7х4 до 9х9) легко определить , что нужный нам результат (не более 26) приносят произведения 8х1, 8х2, 8х3, 9х1 и 9х2. Простым вычислением находим, что нужное нам число - 81.
8х1=8
81-(8х1)=73