Так как выражение под знаком корня должно быть неотрицательным, то прежде всего должно выполняться неравенство ln [cos(5*π*x)]≥0. Но так как при любом значении x cos(5*π*x)≤1, то возможно только равенство ln[cos(5*π*x)]=0. Решая уравнение cos(5*π*x)=1, находим 5*π*x=2*π*n, где n∈Z. Отсюда x=2*n/5. Возвращаясь теперь к исходному неравенству и подставляя туда значение x=2*n/5, получаем неравенство /8*n²/25-8*n+37/≤5, которое приводится к виду n²-25*n+100≤0, или (n-20)*(n-5)≤0. Решая это неравенство методом интервалов, находим 5≤n≤20, то есть n может быть любым натуральным числом от 5 до 20. Тогда решения неравенства можно записать в виде x=2*n/5, где n∈[5;20] и n∈Z. Сумма же всех решений S=2/5*(5+6+...+20)=2/5*200=80.
56 кг
Пошаговое объяснение:
1 день - 7 мішків цибулі, що на 16 кг більше , ніж другого
2 день - 5 мішків цибулі
Завезли 1 дня - ? кг цибулі
Рішення :
1) 7-5 = 2 мішка , на стільки привезли цибулі більше в перший день.
2) За умовою це дорівнює 16 кг цибулі , отже в одному мішку :
16 : 2 = 8 кг цибулі
3) 7*8= 56 кг цибулі завезли першого дня
Відповідь : першого дня завезли 56 кг цибулі
Якщо потрібне повне рішення тоді так :
1) 7-5 = 2 мішка , на стільки привезли цибулі більше в перший день.
2) За умовою це дорівнює 16 кг цибулі , отже в одному мішку :
16 : 2 = 8 кг цибулі
3) 7*8= 56 кг цибулі завезли першого дня
4) 5*8= 40 кг цибулі завезли другого дня
Відповідь : першого дня завезли 56 кг цибулі
ответ: 80.
Пошаговое объяснение:
Так как выражение под знаком корня должно быть неотрицательным, то прежде всего должно выполняться неравенство ln [cos(5*π*x)]≥0. Но так как при любом значении x cos(5*π*x)≤1, то возможно только равенство ln[cos(5*π*x)]=0. Решая уравнение cos(5*π*x)=1, находим 5*π*x=2*π*n, где n∈Z. Отсюда x=2*n/5. Возвращаясь теперь к исходному неравенству и подставляя туда значение x=2*n/5, получаем неравенство /8*n²/25-8*n+37/≤5, которое приводится к виду n²-25*n+100≤0, или (n-20)*(n-5)≤0. Решая это неравенство методом интервалов, находим 5≤n≤20, то есть n может быть любым натуральным числом от 5 до 20. Тогда решения неравенства можно записать в виде x=2*n/5, где n∈[5;20] и n∈Z. Сумма же всех решений S=2/5*(5+6+...+20)=2/5*200=80.