7. Отметьте на координатной плоскости точки М (-3;-2), N (-3;4), K (1;4).
1)Найдите координаты точки P, если MNKP - прямоугольник. . [2]
2) Найдите координаты точки пересечения прямых MKиNP.[1]
3) Найдите координаты точки пересечения прямой MN с осью абсцисс.[1]
4) Найдите координаты точки пересечения прямой KP с осью ординат.[1]
ответ:
пошаговое объяснение:
150 100 – 697 · 208 + 182 620 : 397 = 5 584
697 · 208=144 976
182 620 : 397=460
150 100-144 976=5 124
5 124+460=5 584
( 41 · 134 + 11 978 ) : ( 1 211 – 899 ) = 56
41 · 134=5 494
5 494+11 978 =17 472
1 211 – 899 =312
17 472: 312=56
271 100 – 790 · 306 + 5 711 540 : 809 = 36 420
790 · 306=241 740
5 711 540 : 809 =7 060
271 100-241 740=29 360
29 360+7 060=36 420
7 091 + 19 663 – ( 243 916 + 75 446 ) : 527 · 37 = 4 332
243 916 + 75 446=319 362
319 362 : 527=606
606 · 37=22 422
7 091 + 19 663=26 754
26 754-22 422=4 332
700 200 – 615 880 : 346 · 307 + 46 260 = 200 000
615 880 : 346= 1 780
1 780· 307=546 460
700 200 – 546 460=153 740
153 740+ 46 260 = 200 000
178 · 406 + 37 832 – 558 182 : 397 = 108 694
178 · 406=72 268
558 182 : 397=1 406
72 268 + 37 832=110 100
110 100-1 406=108 694
369 · 304 + 961 620 : ( 1 357 – 840 ) =114 036
( 1 357 – 840) =517
369 · 304 =112 176
961 620 : 517=1 860
112 176+1 860=114 036
в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН.
известно, что АВ = 10, пусть АН = ВН = х,
тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный.
угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3
АС=2*5 корней из 2/3= 10 корней из 2/3