Если имеются 2 отрезка разной длины, то нельзя говорить об их пропорциональности, можно говорить только об отношении длин данных отрезков: |CD|/|AB|=k,которое выражается коэффициентом k.
Коэффициент k показывает, сколько раз отрезок |АВ| укладывается в отрезке |CD|.
Если к данным отрезкам добавить третий, то можно установить пропорциональность данных 3-х отрезков, но только в случае, если отрезок |EF|/|CD|=|CD|/|AB|=k. То есть, отрезок |EF| относится к отрезку |CD| такжe, как отрезок |CD| относится к отрезку AB|, и это отношение выражается через коэффициент k.
Когда говорят, что отрезки |АВ| и |СD| пропорциональны отрезкам |А₁В₁| и |С₁D₁| - это значит, что их отношения равны.
Например: любая измерительная шкала (линейка) имеет бесконечное множество пропорциональных отрезков: 18/9=20/10=4/2=6/3... и тд. - отношения данных числовых отрезков равны и выражаются коэффициентом k=2 (18/9=2 и 6/3=2), то есть:
|АВ|/|СD| = |А₁В₁|/|С₁D₁|,при |АВ|=18; |СD|=9 и |А₁В₁|=6; |С₁D₁|=3
Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.
Если имеются 2 отрезка разной длины, то нельзя говорить об их пропорциональности, можно говорить только об отношении длин данных отрезков: |CD|/|AB|=k,которое выражается коэффициентом k.
Коэффициент k показывает, сколько раз отрезок |АВ| укладывается в отрезке |CD|.
Если к данным отрезкам добавить третий, то можно установить пропорциональность данных 3-х отрезков, но только в случае, если отрезок |EF|/|CD|=|CD|/|AB|=k. То есть, отрезок |EF| относится к отрезку |CD| такжe, как отрезок |CD| относится к отрезку AB|, и это отношение выражается через коэффициент k.
Например: |AB|=2: |CD|=4: |EF|=8 => 8/4=4/2=2, получилась пропорция с коэффициентом k=2.
Когда говорят, что отрезки |АВ| и |СD| пропорциональны отрезкам |А₁В₁| и |С₁D₁| - это значит, что их отношения равны.
Например: любая измерительная шкала (линейка) имеет бесконечное множество пропорциональных отрезков: 18/9=20/10=4/2=6/3... и тд. - отношения данных числовых отрезков равны и выражаются коэффициентом k=2 (18/9=2 и 6/3=2), то есть:
|АВ|/|СD| = |А₁В₁|/|С₁D₁|,при |АВ|=18; |СD|=9 и |А₁В₁|=6; |С₁D₁|=3
18/9=6/3.
Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.
Решим однородное дифференциальное уравнение, соответствующее данному неоднородному:
Составим и решим характеристическое уравнение:
Запишем общее решение однородного уравнения:
Частное решение будем искать в виде:
Найдем первую и вторую производную:
Подставим значения функции и первых двух производных в исходное уравнение:
Сократим на :
Так как левая и правая часть равны, то коэффициенты при х и свободные члены также равны. Получаем систему:
Тогда частное решение имеет вид:
Общее решение заданного уравнения:
ответ: