В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
5312макс1245
5312макс1245
13.11.2020 03:59 •  Математика

7) При параллельном переносе точка А (1; 5) переходит в точку B (10; 13). В какую точку при этом перейдет начало координат?
A) (-9; 8) B) (9; -8) C) (-9; -8) D) (1; 5) E) (9; 8)​

Показать ответ
Ответ:
настя7595
настя7595
14.11.2022 11:11

y = \frac{x}{\sqrt{C+ln|x|} }

или так

y^2 = \frac{x^2}{C+ln|x| }

Пошаговое объяснение:

Найти общее решение дифференциального уравнения первого порядка.

2x^3y' = y(2x^2-y^2)

2x^3y' = 2x^2y-y^3

2y' = 2y/x-(y/x)^3

Получили однородное дифференциальное уравнение

Проводим замену приводящую к уравнению с разделяющимися переменными  

у = xt(x)            y’ = t + xt’

               2(t + xt’) = 2t – t³

                      2xt’ =  – t³

                    2t’/t³ = -1/x

                    2\frac{dt}{t^3}=-\frac{dx}{x}

Интегрируем  обе части уравнения

             2\int\limits{\frac{1}{t^3} } \, dt =-\int\limits {\frac{1}{x} } \, dx

             -\frac{1}{t^2} =-ln|x|-C

                t^2=\frac{1}{C+ln|x|}

               t=\frac{1}{\sqrt{C+ln|x|} }

Находим переменную у

y = x\cdot t=\frac{x}{\sqrt{C+ln|x|} }

Получили общее решение диф. уравнения

0,0(0 оценок)
Ответ:
egor228133722
egor228133722
07.02.2023 09:49

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. … дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО. Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл, тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить производную от функции, заданной неявн

Пошаговое объяснение:

Я лишь обеснила как это решать и всё.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота