ВО - высота, ВО = 6 см, угол А = 30 градусам, угол АОВ = 90 градусов,
ВО - катет противолежащего угла А = 30 градусам равен половине гипотенузы АВ. АВ = 2ВО, АВ = 2*6=12 см.
Рассмотрим треугольник ОВС:
АО=ОС - по условию, АО, ОС - катеты треугольников АВО, ОВС.
ВО - катет треугольника ОВС.
угол ВОС = 90 градусов.
Треугольник АВО = треугольнику ОВС. ПО первому признаку равенства треугольников: если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины
Пошаговое объяснение:
рассмотрим треугольник АВО:
ВО - высота, ВО = 6 см, угол А = 30 градусам, угол АОВ = 90 градусов,
ВО - катет противолежащего угла А = 30 градусам равен половине гипотенузы АВ. АВ = 2ВО, АВ = 2*6=12 см.
Рассмотрим треугольник ОВС:
АО=ОС - по условию, АО, ОС - катеты треугольников АВО, ОВС.
ВО - катет треугольника ОВС.
угол ВОС = 90 градусов.
Треугольник АВО = треугольнику ОВС. ПО первому признаку равенства треугольников: если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины