74б решить это координатным методом Дана треугольная пирамида ABCD. а) Постройте её сечение плоскостью, проходящей через середину ребра AB
параллельно рёбрам AD и BC.
б) Найдите угол между прямыми AD и BC, если AD = 24, BC = 10, а
расстояние между серединами рёбер BD и AC равно 13.
Корни такого уравнения определяются с дискриминанта.
D= b^2-4ac= p^2-4·1·q=p^2-4q.
Корни уравнения определяются по формулам:
х1=(-b+корень из D)/(2a) = (-p+корень(p^2-4q))/2.
x2=(-b-корень из D)/(2a) = (-p-корень(p^2-4q))/2.
По условию p и q являются корнями уравнения. Значит, нужно решить две системы уравнений:
1)х1=p; x2=q.
2) x1=q; x2=p.
Подставим выражения для х1 и х2.
1) (-р+корень(р^2-4q))/2=p;
(-p-корень(p^2-5q))/2=q.
2) (-p+корень(p^2-4q))/2=q.
(-p-корень(p^2-4q)=p.
Умножим на два все части уравнений, чтобы избавиться от дробей и оставим в левой стороне только корень из дискриминанта.
1) корень(p^2-4q)=3 p.
корень(p^2-4q)=-2q-p.
Т.е. 3р=-2q-p.
4p=2q.
q=2p.
Возведем в квадрат первое уравнение первой системы.
p^2-4q=9p^2. Подставим q=2p.
8p^2=-4q=-4·2p. p=-1. q=-2.
Второй ответ р=0, q=0.
2) корень(p^2-4q)=2 q +p.
корень(p^2-4q)=-3p.
Отсюда 2q+p=-3p. q=-2p.
Возведем в квадрат второе уравнение второй системы.
p^2-4q=9p^2.
8p^2=-4q=8p. p=1. q=-2.
Второй ответ р=0, q=0.
ответ к заданию: 1) q=p=0; 2) q=-2, p=1; 3) q=-2, p=-1.
Скорость сближения велосипедистов равна:
15-10=5 (км/час)
Время сближения:
2 : 5=0,4 (час)
Время движения (t) у обоих велосипедистов одинаковое.
Первый велосипедист проедет расстояние:
S1=15*t
Обозначим количество кругов у первого велосипедиста за (n1)
При количестве кругов n1, расстояние пройденное первым велосипедистом составит:
S1=5*0,4*n1=2n1
Приравняем оба выражения S1
15t=2n1
Второй велосипедист проедет расстояние равное:
S2=10*t
Обозначим количество кругов у второго велосипедиста за (n2)
При количестве кругов n2, расстояние пройденное вторым велосипедистом составит:
S2=5*0,4*n2=2n2
Приравняем оба выражения S2
10t=2n2
Получилось два уравнения:
15t=2n1
10t=2n2
Разделим первое уравнение на второе, получим:
15t/10t=2n1/2n2
15/10=n1/n2
Делаем вывод, что минимальное количество кругов до встречи равно:
n1=15
n2=10
Из первого уравнения 15t=2n1 найдём значение (t)
t=2n1/15 подставим в это выражение n1=15
t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.