Дано: R = 20 см (R - радиус шара), OA ⊥ α, OA = 12 см, O - центр шара,
A - центр окружности в плоскости α
Найти: S - ?
Решение: Сечением шара плоскостью по определению является окружность .Проведем прямую которая пусть пересекает окружность с центром A в точках B и C, тогда отрезок BC по определению диаметр окружности с центром A. Так как по условию OA ⊥ α, то прямая OA перпендикулярна к любой прямой лежащей в плоскости α по следствию из определения перпендикулярности прямой к плоскости, то есть OA ⊥ BC. Так как точки B и C принадлежат шару, то отрезки OB и OC - радиусы шара. Так как точка A центр окружности, то она по свойству центра окружности делит диаметр пополам на два равных радиуса, то есть AC = AB = BC : 2. Рассмотрим прямоугольный(OA ⊥ BC) треугольник ΔAOC. По теореме Пифагора: см.
Площадь сечения 804,24 сантиметров квадратных
Пошаговое объяснение:
Дано: R = 20 см (R - радиус шара), OA ⊥ α, OA = 12 см, O - центр шара,
A - центр окружности в плоскости α
Найти: S - ?
Решение: Сечением шара плоскостью по определению является окружность .Проведем прямую которая пусть пересекает окружность с центром A в точках B и C, тогда отрезок BC по определению диаметр окружности с центром A. Так как по условию OA ⊥ α, то прямая OA перпендикулярна к любой прямой лежащей в плоскости α по следствию из определения перпендикулярности прямой к плоскости, то есть OA ⊥ BC. Так как точки B и C принадлежат шару, то отрезки OB и OC - радиусы шара. Так как точка A центр окружности, то она по свойству центра окружности делит диаметр пополам на два равных радиуса, то есть AC = AB = BC : 2. Рассмотрим прямоугольный(OA ⊥ BC) треугольник ΔAOC. По теореме Пифагора: см.
По формуле площади круга: сантиметров квадратных.
1. По теореме Бернулли, p = 0,8; q = 1-p = 0,2
1) Вероятность, что 4 мотора работает, а 2 не работает.
P(4) = C(4, 6)*p^4*q^2 = 6*5/2*(0,8)^4*(0,2)^2 = 0,24576
2) Вероятность, что работают все 6 моторов
P(6) = C(6, 6)*p^6*q^0 = 1*(0,8)^6*1 = 0,262144
3) Вероятность, что работает не больше 2 моторов, то есть 0 или 1.
P(0) = C(0, 6)*p^0*q^6 = 1*1*(0,2)^6 = 0,000064
P(1) = C(1, 6)*p^1*q^5 = 6*(0,8)^1*(0,2)^5 = 0,001536
Общая вероятность равна сумме этих двух
P = P(0) + P(1) = 0,000064 + 0,001536 = 0,0016
4. По той же формуле Бернулли, p = 0,4; q = 1-p = 0,6.
Вероятность, что событие А появится меньше 2 раз из 6, то есть 0 или 1.
P(0) = C(0, 6)*p^0*q^6 = 1*1*(0,6)^6 = 0,046656
P(1) = C(1, 6)*p^1*q^5 = 6*(0,4)^1*(0,6)^5 = 0,186624
Общая вероятность, что А наступит МЕНЬШЕ 2 раз
P = P(0) + P(1) = 0,046656 + 0,186624 = 0,23328
Вероятность того, что А наступит НЕ МЕНЬШЕ 2 раз, и значит, в результате наступит событие В.
Q = 1 - P = 1 - 0,23328 = 0,76672