Для начала подсчитаем общее количество возможных комбинаций, которые могут выпасть. Согласно условию задачи дано 3 игральные кости, каждая из них имеет 6 граней, поэтому число всех комбинаций равно: 63 = 216 Теперь нужно подсчитать количество комбинаций, в которых выпадет ровно 7 очков. Перечислим их: 115, 124, 133, 142, 151,214, 223, 232, 241,313, 322, 331,412, 421,511Всего таких комбинаций получилось 15. Осталось лишь подсчитать вероятность выпадения одной из этих комбинаций. Для этого нужно поделить количество интересующих исходов на количество всех возможных исходов: P = 15 / 216 = 0.0694444... ≈ 0.07
Для начала подсчитаем общее количество возможных комбинаций, которые могут выпасть. Согласно условию задачи дано 3 игральные кости, каждая из них имеет 6 граней, поэтому число всех комбинаций равно: 63 = 216 Теперь нужно подсчитать количество комбинаций, в которых выпадет ровно 7 очков. Перечислим их: 115, 124, 133, 142, 151,214, 223, 232, 241,313, 322, 331,412, 421,511Всего таких комбинаций получилось 15. Осталось лишь подсчитать вероятность выпадения одной из этих комбинаций. Для этого нужно поделить количество интересующих исходов на количество всех возможных исходов: P = 15 / 216 = 0.0694444... ≈ 0.07
63 = 216 Теперь нужно подсчитать количество комбинаций, в которых выпадет ровно 7 очков. Перечислим их:
115, 124, 133, 142, 151,214, 223, 232, 241,313, 322, 331,412, 421,511Всего таких комбинаций получилось 15. Осталось лишь подсчитать вероятность выпадения одной из этих комбинаций. Для этого нужно поделить количество интересующих исходов на количество всех возможных исходов:
P = 15 / 216 = 0.0694444... ≈ 0.07
63 = 216 Теперь нужно подсчитать количество комбинаций, в которых выпадет ровно 7 очков. Перечислим их:
115, 124, 133, 142, 151,214, 223, 232, 241,313, 322, 331,412, 421,511Всего таких комбинаций получилось 15. Осталось лишь подсчитать вероятность выпадения одной из этих комбинаций. Для этого нужно поделить количество интересующих исходов на количество всех возможных исходов:
P = 15 / 216 = 0.0694444... ≈ 0.07