Все дроби, равные \dfrac45
5
4
, имеют вид \dfrac{4k}{5k}
5k
4k
, где k - целое и k≠0.
По условию 43 < 4k < 63, найдём k, а затем и сами дроби.
\begin{gathered}\dfrac{43}4
При k=11:
\dfrac{4k}{5k} =\dfrac{4\cdot 11}{5\cdot 11} =\dfrac{44}{55}
=
5⋅11
4⋅11
55
44
При k=12:
\dfrac{4k}{5k} =\dfrac{4\cdot 12}{5\cdot 12} =\dfrac{48}{60}
5⋅12
4⋅12
60
48
При k=13:
\dfrac{4k}{5k} =\dfrac{4\cdot 13}{5\cdot 13} =\dfrac{52}{65}
5⋅13
4⋅13
65
52
При k=14:
\dfrac{4k}{5k} =\dfrac{4\cdot 14}{5\cdot 14} =\dfrac{56}{70}
5⋅14
4⋅14
70
56
При k=15:
\dfrac{4k}{5k} =\dfrac{4\cdot 15}{5\cdot 15} =\dfrac{60}{75}
5⋅15
4⋅15
75
ответ: 44/55; 48/60; 52/65; 56/70 и 60/75.
Б) (238 145-237 776):41+327:3*7 = 772
В) 10000-120*80+(900-750:25)*7 = 6460
А) 690:3*205-47150+850=850
1) 690 : 3 = 230
2) 230 * 205 = 47150
3) 47150 - 47150 = 0
4) 0 + 850 = 850
ответ: 850
Б) (238 145-237 776):41+327:3*7 = 772
1) 238 145 - 237 776 = 369
2) 369 : 41 = 9
3) 327 : 3 = 109
4) 109 * 7 = 763
5) 763 + 9 = 772
ответ: 772
В) 10000-120*80+(900-750:25)*7 = 6460
1) 750 : 25 = 30
2) 900 - 30 = 870
3) 870 * 7 = 6090
4) 120 * 80 = 9600
5) 10000 - 9600 = 400
6) 6090 + 400= 6460
ответ: 6460
Все дроби, равные \dfrac45
5
4
, имеют вид \dfrac{4k}{5k}
5k
4k
, где k - целое и k≠0.
По условию 43 < 4k < 63, найдём k, а затем и сами дроби.
\begin{gathered}\dfrac{43}4
При k=11:
\dfrac{4k}{5k} =\dfrac{4\cdot 11}{5\cdot 11} =\dfrac{44}{55}
5k
4k
=
5⋅11
4⋅11
=
55
44
При k=12:
\dfrac{4k}{5k} =\dfrac{4\cdot 12}{5\cdot 12} =\dfrac{48}{60}
5k
4k
=
5⋅12
4⋅12
=
60
48
При k=13:
\dfrac{4k}{5k} =\dfrac{4\cdot 13}{5\cdot 13} =\dfrac{52}{65}
5k
4k
=
5⋅13
4⋅13
=
65
52
При k=14:
\dfrac{4k}{5k} =\dfrac{4\cdot 14}{5\cdot 14} =\dfrac{56}{70}
5k
4k
=
5⋅14
4⋅14
=
70
56
При k=15:
\dfrac{4k}{5k} =\dfrac{4\cdot 15}{5\cdot 15} =\dfrac{60}{75}
5k
4k
=
5⋅15
4⋅15
=
75
60
ответ: 44/55; 48/60; 52/65; 56/70 и 60/75.