Представим z как: z = 100a+10b+c Тогда первое предложение задачи можно записать так: (100a+10b+c)-(100b+10a+c)=630 Раскрываем скобки, упрощаем: 90a-90b=630 a-b=7 Выражаем а: а=b+7 И теперь выписываем условие из второго предложения: a+b+c=20 Подставляем ранее выраженное: 2b+7+c=20 2b+c=13 Отсюда с - однозначно нечётное. Т.к. a не больше 9, то b или 1, или 2. Но с b равным 1 получилось бы, что c равно 11, что невозможно. Так что единственная допустимая комбинация - а=9, b=2, c=9, отсюда число z=929. Спрашивайте, если что непонятно
Тригономе́трия (от др.-греч. τρίγωνον «треугольник» и μετρέω «измеряю», то есть измерение треугольников) — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии[1]. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса (1561—1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии.
Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Например, большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников.
z = 100a+10b+c
Тогда первое предложение задачи можно записать так:
(100a+10b+c)-(100b+10a+c)=630
Раскрываем скобки, упрощаем:
90a-90b=630
a-b=7
Выражаем а:
а=b+7
И теперь выписываем условие из второго предложения:
a+b+c=20
Подставляем ранее выраженное:
2b+7+c=20
2b+c=13
Отсюда с - однозначно нечётное.
Т.к. a не больше 9, то b или 1, или 2. Но с b равным 1 получилось бы, что c равно 11, что невозможно. Так что единственная допустимая комбинация - а=9, b=2, c=9, отсюда число z=929.
Спрашивайте, если что непонятно
Тригономе́трия (от др.-греч. τρίγωνον «треугольник» и μετρέω «измеряю», то есть измерение треугольников) — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии[1]. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса (1561—1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии.
Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Например, большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников.