885.1)Найдите периметр прямоугольника,если его длина 9см,а ширина в 3 раза меньше длины 2)Найдите длину стороны квадрата,если его периметр на 8 см больше периметра прямоугольника из пункта 1).3)Вычислите площадь квадрата из пункта математика 5 класс
1. Найдем точки АВС.
x+y=2 и 2x-y=-2
y = 2 - x
y = 2x + 2 - уравнения прямых:
2. Найдем точку пересечения:
2 - x = 2x + 2
2x = 4
x = 2
y = 0
точка А (2;0) - координаты
Стороны x+y=2 - AB
2x-y=-2 - АС , следовательно
уравнение стороны ВС
x-2y=2
x - 2y - 2 = 0 - уравнение стороны ВС
Вектор с координатами (1, -2) перпендикулярен стороне ВС.
Используя этот вектор как направляющий, построим уравнение прямой, проходящей через точку А.
Прямая будет перпендикулярна ВС, будет и высотой.
Направляющий вектора (1, -2) ( BC) точка А (2,0)
(x - 2)/1 = y/-2
или
y = 4 - 2x - искомое уравнение высоты.
15 м
Пошаговое объяснение:
.
Составим систему уравнений.
P ΔLBN = LB + BN + LN
LB = BN, по свойству равнобедренного треугольника.
Пусть x м - LB и BN, тогда y м - LN
x + x + y = 50 - 1 уравнение
Составляем 2 уравнение:
P ΔLBT = LB + BT + LT
x м - LB
BT - высота, медиана, биссектриса (по свойству равнобедренного треугольника), значит LT = TN = 1/2LN
Тогда 1/2y м - LT
ΔLBT - прямоугольный, так как BT - высота
⇒ по теореме Пифагора:
м - BT
- 2 уравнение
Решим получившуюся систему уравнений:
В числителе 2 дроби видим формулу сокращённого умножения - квадрат разности. Раскладываем по формуле: (a - b)² = a² - 2ab + b²
17 м - LB
17 + 17 + y = 50
y = 50 - 17 - 17
y = 50 - 34
y = 16
16 м - LN
LT = 1/2LN = 16/2 = 8 м
м
.
P ΔLBN = LB + LN + BN
Так как ΔLBN - равнобедренный ⇒ LB = BN (по свойству равнобедренного треугольника)
⇒ P ΔLBN = 2LB + LN
2LB + LN = 50 м
P ΔLBT = LB + BT + LT
Так как BT - медиана, по условию ⇒ LT = 1/2LN
⇒ P ΔLBT = LB + BT + 1/2LN
LB + BT + 1/2LN = 40 м | · 2
2LB + 2BT + LN = 80 м
Так как 2LB + LN = 50 м ⇒ 2BT = 80 - 50 = 30 м
⇒ BT = 30 : 2 = 15 м