89. Используя данные рисунка, рассчитайте: 1) длину АВ: 2) длинуАО; 3) периметр АБОК: 4) размер ЗБАО (в пределах 1 °); 5) размер ZBAC (в пределах 1 °).
Федеральная таможенная служба (ФТС России) — федеральный орган исполнительной власти, осуществляющий в соответствии с законодательством Российской Федерации функции по контролю и надзору в области таможенного дела, а также функции агента валютного контроля и специальные функции по борьбе с контрабандой, иными преступлениями и административными правонарушениями. Общие положения, касающиеся таможенного контроля Таможенный контроль — совокупность мер, осуществляемых таможенными органами в целях обеспечения соблюдения таможенного законодательства Таможенного союза. Таможенный контроль проводится только таможенными органами в соответствии с ТК РФ.
Общие положения, касающиеся таможенного контроля
Таможенный контроль — совокупность мер, осуществляемых таможенными органами в целях обеспечения соблюдения таможенного законодательства Таможенного союза.
Таможенный контроль проводится только таможенными органами в соответствии с ТК РФ.
Пошаговое объяснение:
1)
f`(x)=6x2+6x–12
f`(x)=0
x2+x–2=0
D=1+8=9
x=–2 и х=1
__+_ (–2) __–__ (1) _+__
f`(x) > 0 при х ∈ (– ∞;–2)U(1;+ ∞ ),
f(x) возрастает на (– ∞;–2)U(1;+ ∞ )
f`(x) < 0 при х ∈ (–2;1)
функция f(x) убывает на (–2;1)
2)
f`(x)=–2х+4
f`(x)=0
–2х+4=0
x=2
__+_ (2) __–__
f`(x) > 0 при х ∈ (– ∞;2)
f(x) возрастает на (– ∞;2)
f`(x) < 0 при х ∈ (2;+∞)
функция f(x) убывает на (2;+ ∞)
3)
f`(x)=3cos3x–1
f`(x)=0
3cos3x–1=0
cos3x=1/3
3x=±arccos(1/3)+2πk, k∈Z
4)
f`(x)=–3sin3x+1
f`(x)=0
–3sin3x+1=0
sin3x=1/3
3x=(–1)karcsin(1/3)+πk, k ∈ Z
5)
f`(x)=3x2–6х+24
f`(x)=0
x2–2x+8=0
D=4–32 < 0
f`(x) > 0 при любом х
f(x) возрастает на (– ∞;+ ∞ )
6)
f`(x)=4/x2
f`(x) > 0 при любом х, x≠0
f(x) возрастает на (– ∞;0) и на (0;+ ∞ )
7)
f`(x)=3x2–6x–45
f`(x)=0
x2–2x–15=0
D=4+60=64
x=–3 и x=5
_+__ (–3) _–_ (5) __+_
f`(x) > 0 при х ∈ (– ∞;–3)U(5;+ ∞ ),
f(x) возрастает на (– ∞;–3)U(5;+ ∞ )
f`(x) < 0 при х ∈ (–3;5)
функция f(x) убывает на (–3;5)
8)
f`(x)=4x3–3x2
f`(x)=0
4x3–3x2=0
x2·(4x–3)=0
x=0 и х=3/4
_–__ (0) _–_ (3/4) __+_
f`(x) > 0 при х ∈(3/4;+ ∞ ),
f(x) возрастает на(3/4;+ ∞ )
f`(x) < 0 при х ∈ (–∞;3/4)
функция f(x) убывает на (–∞;3/4)