1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на bа) а = 5 * 5 * 7 * 13 = 2 275 b = 5 * 7 * 7 * 13 = 3 185
НОК (a; b) = 5 * 5 * 7 * 7 * 13 = 15 925 - наименьшее общее кратное
15 925 : 2 275 = 7 15 925 : 3 185 = 5
б) а = 504 : 2 = 252 b = 540 : 2 = 270
252 : 2 = 126 270 : 2 = 135
126 : 2 = 63 135 : 3 = 45
63 : 3 = 21 45 : 3 = 15
21 : 3 = 7 15 : 3 = 5
7 : 7 = 1 5 : 5 = 1
а = 2 * 2 * 2 * 3 * 3 * 7 b = 2 * 2 * 3 * 3 * 3 * 5
НОК (а; b) = 2 * 2 * 2 * 3 * 3 * 3 * 5 * 7 = 7 560 - наименьшее общее кратное
7 560 : 504 = 15 7 560 : 540 = 14