а) Чертим в тетради отрезок длиной 20 клеток. Это единица, то есть 5/5. Т. к в знаменателе 5, частей в отрезке будет 5. Делим этот отрезок на 5 равных частей, каждая из которых будет равна 20 разделить на 5, то есть 4 клетки. Две эти части вместе составляют отрезок 2/5км.
б) Действуем по такому же принципу. 20 клеток - это единица (или 5/5). Делим этот отрезок на 5 равных частей по 4 клетки. Три такие части вместе составляют отрезок 3/5км.
в) А теперь делим отрезок в 20 клеток на 4 части, ведь в знаменателе 4 и, соответственно, делим мы на 4. Каждая из этих частей будет равна 20 разделить на 4, то есть 5. Три таких части составляют отрезок 3/4км.
составить уравнение плоскости проходящей через точки А (3,-1,2) , В (2,1,4) и параллельно вектору а =(5,-2,-1)
уравнение плоскости, проходящей через точку М (Хо, Уо, Zо) перпендикулярно вектору нормали
N(А, В, С) имеет вид
А (Х- Хо) +В (У- Уо) +С (Z- Zо) =0
Точка по условию задана, найдем вектор нормали N(А, В, С) . Точки А (3,-1,2) , В (2,1,4) принадлежат плоскости, вектор АВ имеет координаты (2-3,1-(-1),4-2) или АВ (-1,2,2) второй вектор а =(5,-2,-1), тогда вектор нормали N(А, В, С) , есть векторное произведение двух векторов АВ (-1,2,2) и а =(5,-2,-1)
N=АВ х а= матрица
i….. j…… k
-1…..2…….2 =
5….-2…….-1
Разложим матрицу по первой строке
I * матрица
2……2
-2…-1 -
J* матрица
-1….2
5….-1+
k* матрица
-1…..2
5…..-2=
=2 *I+9* J-8* k, т. е.
Вектор нормали имеет координаты N(2,9,-8), точку возьмем любую, например, А (3,-1,2), подставим в уравнение плоскости получим
ответ: 3/4км.
Пошаговое объяснение:
а) Чертим в тетради отрезок длиной 20 клеток. Это единица, то есть 5/5. Т. к в знаменателе 5, частей в отрезке будет 5. Делим этот отрезок на 5 равных частей, каждая из которых будет равна 20 разделить на 5, то есть 4 клетки. Две эти части вместе составляют отрезок 2/5км.
б) Действуем по такому же принципу. 20 клеток - это единица (или 5/5). Делим этот отрезок на 5 равных частей по 4 клетки. Три такие части вместе составляют отрезок 3/5км.
в) А теперь делим отрезок в 20 клеток на 4 части, ведь в знаменателе 4 и, соответственно, делим мы на 4. Каждая из этих частей будет равна 20 разделить на 4, то есть 5. Три таких части составляют отрезок 3/4км.
Пошаговое объяснение:
составить уравнение плоскости проходящей через точки А (3,-1,2) , В (2,1,4) и параллельно вектору а =(5,-2,-1)
уравнение плоскости, проходящей через точку М (Хо, Уо, Zо) перпендикулярно вектору нормали
N(А, В, С) имеет вид
А (Х- Хо) +В (У- Уо) +С (Z- Zо) =0
Точка по условию задана, найдем вектор нормали N(А, В, С) . Точки А (3,-1,2) , В (2,1,4) принадлежат плоскости, вектор АВ имеет координаты (2-3,1-(-1),4-2) или АВ (-1,2,2) второй вектор а =(5,-2,-1), тогда вектор нормали N(А, В, С) , есть векторное произведение двух векторов АВ (-1,2,2) и а =(5,-2,-1)
N=АВ х а= матрица
i….. j…… k
-1…..2…….2 =
5….-2…….-1
Разложим матрицу по первой строке
I * матрица
2……2
-2…-1 -
J* матрица
-1….2
5….-1+
k* матрица
-1…..2
5…..-2=
=2 *I+9* J-8* k, т. е.
Вектор нормали имеет координаты N(2,9,-8), точку возьмем любую, например, А (3,-1,2), подставим в уравнение плоскости получим
2(Х- 3)+9(У+1)-8(Z- 2)=0
Раскроем скобки получим, уравнение плоскости
2х+9у-8 Z+19=0
УДАЧИ