9 За перший місяць відремонтували всісі дороги, за другий — 60 % остачі, а за третій - решту 28 км. Скільки кілометрів дороги треба було відремонтувати
1. Делитель натурального числа (далее нч) - это число, на которое делится нч без остатка. Кратное - это число, получаемое при умножении нч на другое число. Т.е. которое можно поделить на нч без остатка. Например, число 4. 2 - это делитель нч, т.к. 4:2=2. А 16 - это кратное. 16:4=4. 2. При делимости на 10 число должно быть "круглым", т.е. оканчиваться на 0. Например, 70. При делимости на 5 нч должно оканчиваться 0 или 5. Например, 35. На 2 делится любое четное число, то есть заканчивающееся на 0;2;4;6;8. 16;20;38 и прочие. Для деления на 3 и 9 необходимо, чтобы сумма цифр нч давала в результате число, кратное 3 и 9 соответственно. Например, 111 делится на 3, потому что 1+1+1=3. И 222 делится на 3, так как 2+2+2=6, а 6 кратно 3. На 9 делится, например, 630, 6+3+0=9. 882 тоже делится на 9, 8+8+2=18, кратно 9. 3. Простые числа - это числа, делящиеся без остатка только на себя и единицу. Составные - делящиеся без остатка не только на себя и единицу, но и еще на какое-либо число (или числа). Например, 5-простое, а 6-нет, потому что 6:2=3. 4. Это проще показать. Допустим, надо разложить число 6. 6:2=3; 6:3=2. Простые множетили 6 - 2 и 3. Но тут важно помнить простые числа хотя бы до 23, потому что если один из множителей, например, 4, то следует разложить его на 2 и 2 (записав ...2;2). 5. Взаимно простыми называются нч, если они не имеют никаких общих делителей, кроме 1. Например, 45 и 16. 45=(5;3;3), 16=(2;2;2;2), ни один из множителей не совпадает. 6. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь. Поэтому 2|3 = 4(2*2)|6(3*2) =6|9 и т.п. 7. Чтобы умножить дробь, необходимо увеличить числитель. Чтобы разделить - знаменатель. 2|3 * 2=2*2|3=4|3. 2|3 : 3=2|3*3=2|9. Чтобы умножить дробь на дробь надо числитель первой дроби умножить на числитель второй, знаменатели умножить аналогично. 2|3*4|5=2*4|3*5=8|15 Чтобы разделить дробь на дробь, надо числитель первой дроби умножить на знаменатель второй, а знаменатель - на числитель. 4|5:2|3=4*3|2*5=12|10(=1,2) 8. Два числа, произведение которых равно 1, называют взаимно обратными. Например: 3 и 1|3, т.к. 3*1|3=3|3=1 9. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби. Если числитель и знаменатель дроби являются взаимно простыми числами, то такая дробь называется несократимой. 6|9=6:3|9:3=2|3. 10. Для приведения дробей к общему знаменателю надо: 1. найти наименьшее общее кратное знаменателей этих дробей (наименьший общий знаменатель); 2. разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; 3. умножить числитель и знаменатели каждой дроби на ее дополнительный множитель. 1|2 и 2|3. 2 и 3 - простые, значит, НОК=произведению 2 и 3=6. 6:2=3;6:3=2. 1*3|2*3 и 2*2|3*2= 3|6 и 4|6
Материалы, полученные при исследовании адыгских поселений и могильников второй половины I тыс., характеризуют адыгов как оседлых земледельцев, не утративших идущих с меотских времён навыков плужного земледелия.Основными земледельческими культурами, которые возделывали адыги, были мягкая пшеница, ячмень, просо, рожь, овес, из технических культур — конопля и, возможно, лён. Многочисленные зерновые ямы — хранилища раннесредневековой эпохи — прорезают толщи ранних культурных напластований на городищах Прикубанья, а крупные красноглиняные пифосы — сосуды, предназначенные главным образом для хранения зерна, составляют основной вид керамических изделий, бытовавших на поселениях Черноморского побережья.Почти на всех поселениях встречаются обломки круглых ротационных жерновов или целые жерновые камни, служившие для дробления и размола зерна. Найдены обломки каменных ступ-крупорушек и пестов-толкачей. Известны находки серпов (Сопино, Дюрсо), которые могли использоваться как для жатвы зерновых, так и для косьбы кормовых трав для скота.