90. 7y+6(2y-1)+y-2=5(5-3y)+15y-3+10 91. 4x+10(x+4)=6(10-x)+2x-2
92. 18+13(b-5)+17=4b+5(6-b)+10
93. 18x+5(x-14)-25=23(x+1)-118
94. 5a+3(2a-5)=4(12-a)-3
95. 6-2(2-2x)=6(x-2)
96. 5(9t-3(2t-4))+12=4(t+29)
97. 2(5x-2(x+3))-15=17+x+11
98. 55-6(1-3(a-7))-4=19+5(a+1)-8a
99. 78-3(5+4(x-3))+10=6+5(3x-1)
100. 4(15-3(2x+4))-13=7(x+1)-39
за ответ
S (ABCD) = AB^2 = 13^2 = 169
AK = BM = CT = DP = 4 >
KB = MC = TD = PA = 9 =>
S (KBM) = S (MCT) = S (TDP) = S (PAK) = 1\2 * AK * AP = 1\2 * 4 * 9 = 18 - площадь одного треугольника =>
S (KMTP) = S (ABCD) - 4*S (KBM) = 169 - 4*18 = 97
или другой вариант решения:
треугольники KBM = MCT = TDP = PAK по двум сторонам и углу (90 град) между ними =>
KM = MT = TP = PK = V(KB^2 + BM^2) = V(9^2 + 4^2) = V97 - сторона внутреннего квадрата, а KMTP - квадрат, так как:
L BKM + L BMK = 90 град.
Треугольники равны => равны и их соответственные углы =>
L BKM = L CMT =>
L BKM + L CMT = 90 град =>
L KMT = 180 - (L BKM + L CMT) = 180 - 90 = 90 град. =>
S (KMTP) = KM^2 = (V97)^2 = 97
Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}
(f(x)+g(x))
′
=f
′
(x)+g
′
(x)
(n⋅f(x))
′
=n⋅f
′
(x)
(x
n
)
′
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
′
(x)=(3x
2/3
−x)
′
=(3x
2/3
)
′
−(x)
′
=3⋅
3
2
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
3
x
2
−1
F
′
(1)=
3
1
2
−1=2−1=1