ответ: Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Итак, нам нужно сравнить:
Числа, кратные 8, но не кратные 9.
Числа, кратные 9, но не кратные 8.
Давайте к каждой из этих групп чисел прибавим числа, которые кратны 8 и еще числа, кратные 9. Получим:
1. (Кратные 8 + не кратные 9) + (кратные 8 + кратные 9) = кратные 8 + кратные 8 = 2 * (кратные 8).
2. (Кратные 9 + не кратные 8) + (кратные 8 + кратные 9) = кратные 9 + кратные 9 = 2 * (кратные 9).
Теперь нам нужно сравнить удвоенное количество чисел, кратных 8, и удвоенное количество, чисел кратных 9. Можно поделить каждую из частей на 2.
Итак, каких чисел больше:
кратных 8;
или кратных 9?
Понятно, что чисел, кратных 8, все-таки больше, чем чисел, кратных 9, так как само число 8 меньше 9 и мы берем довольно большой промежуток чисел.
Возвратившись к исходной задаче, получаем:
Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
1) 70º, 80º, 100º, 110º.
2) 40º, 50º, 70º, 200º.
Пошаговое объяснение:
1) Дано отношение 7:8:10:11
Следовательно имеется
7+8+10+11=36 частей.
Сумма углов четырехугольника равна 360º.
1 часть=360º:36=10º
7*10º=70º - один угол,
8*10º=80º - второй угол,
10*10º=100º - третий угол,
11*10º=110º - четвертый угол.
Проверка:
70º+80º+100º+110º=360º
360º=360º
2) Дано отношение 4:5:7:20
4+5+7+20=36 частей
1 часть=360:36=10º
4*10º=40º - один угол,
5*10º=50º - второй угол,
7*10º=70º - третий угол,
20*10º=200º - четвертый угол.
40º+50º+70º+200º=360º
360º:=360º
ответ: Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Итак, нам нужно сравнить:
Числа, кратные 8, но не кратные 9.
Числа, кратные 9, но не кратные 8.
Давайте к каждой из этих групп чисел прибавим числа, которые кратны 8 и еще числа, кратные 9. Получим:
1. (Кратные 8 + не кратные 9) + (кратные 8 + кратные 9) = кратные 8 + кратные 8 = 2 * (кратные 8).
2. (Кратные 9 + не кратные 8) + (кратные 8 + кратные 9) = кратные 9 + кратные 9 = 2 * (кратные 9).
Теперь нам нужно сравнить удвоенное количество чисел, кратных 8, и удвоенное количество, чисел кратных 9. Можно поделить каждую из частей на 2.
Итак, каких чисел больше:
кратных 8;
или кратных 9?
Понятно, что чисел, кратных 8, все-таки больше, чем чисел, кратных 9, так как само число 8 меньше 9 и мы берем довольно большой промежуток чисел.
Возвратившись к исходной задаче, получаем:
Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
1) 70º, 80º, 100º, 110º.
2) 40º, 50º, 70º, 200º.
Пошаговое объяснение:
1) Дано отношение 7:8:10:11
Следовательно имеется
7+8+10+11=36 частей.
Сумма углов четырехугольника равна 360º.
1 часть=360º:36=10º
7*10º=70º - один угол,
8*10º=80º - второй угол,
10*10º=100º - третий угол,
11*10º=110º - четвертый угол.
Проверка:
70º+80º+100º+110º=360º
360º=360º
2) Дано отношение 4:5:7:20
Следовательно имеется
4+5+7+20=36 частей
Сумма углов четырехугольника равна 360º.
1 часть=360:36=10º
4*10º=40º - один угол,
5*10º=50º - второй угол,
7*10º=70º - третий угол,
20*10º=200º - четвертый угол.
Проверка:
40º+50º+70º+200º=360º
360º:=360º