Это этот вопрос? AB = BC = CD = AD = BM + MC = 4 + 9 = 13 - сторона квадрата => S (ABCD) = AB^2 = 13^2 = 169 AK = BM = CT = DP = 4 > KB = MC = TD = PA = 9 => S (KBM) = S (MCT) = S (TDP) = S (PAK) = 1\2 * AK * AP = 1\2 * 4 * 9 = 18 - площадь одного треугольника => S (KMTP) = S (ABCD) - 4*S (KBM) = 169 - 4*18 = 97 или другой вариант решения: треугольники KBM = MCT = TDP = PAK по двум сторонам и углу (90 град) между ними => KM = MT = TP = PK = V(KB^2 + BM^2) = V(9^2 + 4^2) = V97 - сторона внутреннего квадрата, а KMTP - квадрат, так как: L BKM + L BMK = 90 град. Треугольники равны => равны и их соответственные углы => L BKM = L CMT => L BKM + L CMT = 90 град => L KMT = 180 - (L BKM + L CMT) = 180 - 90 = 90 град. => S (KMTP) = KM^2 = (V97)^2 = 97
S (ABCD) = AB^2 = 13^2 = 169
AK = BM = CT = DP = 4 >
KB = MC = TD = PA = 9 =>
S (KBM) = S (MCT) = S (TDP) = S (PAK) = 1\2 * AK * AP = 1\2 * 4 * 9 = 18 - площадь одного треугольника =>
S (KMTP) = S (ABCD) - 4*S (KBM) = 169 - 4*18 = 97
или другой вариант решения:
треугольники KBM = MCT = TDP = PAK по двум сторонам и углу (90 град) между ними =>
KM = MT = TP = PK = V(KB^2 + BM^2) = V(9^2 + 4^2) = V97 - сторона внутреннего квадрата, а KMTP - квадрат, так как:
L BKM + L BMK = 90 град.
Треугольники равны => равны и их соответственные углы =>
L BKM = L CMT =>
L BKM + L CMT = 90 град =>
L KMT = 180 - (L BKM + L CMT) = 180 - 90 = 90 град. =>
S (KMTP) = KM^2 = (V97)^2 = 97
1)найду вершины прямоугольника-точки пересечения диагонали с заданными прямыми. Для этого надо решить 2 системы уравнений
а) 2x-y+2=0 и x-y+2=0
y=2x+2; x-2x-2+2=0; x=0;y=2-первая, пусть будет А(0;2)
б)2x-y-6=0 и x-y+2=0
y=2x-6; x-2x+6+2=0; x=8; y=10-пусть будет С(8;10)
2)к первой прямой из точки А ищу нормаль,это n1(2;-1)
n1 и нормаль искомой стороны n2 (x1;y1) перпендикулярны. значит скалярное произведение их должно быть 0
тогда оно в координатах (n1,n2)=2*x1-1*y1=0; тогда x1=1; y1=2
(1;2) нормаль искомой прямой n2, тогда уравнение искомой прямой x+2y+c=0; Эта прямая проходит через точку A, подставив ее нахожу c
0+2*2+c=0; c=-4
Тогда уравнение третьей стороны прямоугольника x+2y-4=0
Вторая искомая сторона параллельна первой искомой, поэтому найду С1, подставив точку С в уравнение x+2y+c=0
8+2*10+c1=0; c1=-28
тогда уравнение второй искомой стороны
x+2y-18=0
Пошаговое объяснение: Хз вроде так, у нас так делают.